Appendix
A. Additional Training Details

A.1. SCOP Dataset Construction

The optimal threshold values for the SCOP data en-
gine were empirically determined to be {7y, 7y, 70, s} =
{0.2,2.0,0.3,0.5} through grid search. We then applied
these thresholds to process the COCO training split [43],
resulting in the curated SCOP dataset. The initial Relation-
ship Reasoning stage identifies 2,468,858 object pairs with
their corresponding spatial relationships. The subsequent
Spatial Constraints Enforcement stage systematically filters
these pairs. This process applies a series of increasingly
stringent criteria: Visual Significance eliminates 1,929,560
pairs, Semantic Distinction removes 169,973, Spatial Clar-
ity filters out 119,457, Minimal Overlap excludes 148,376,
and Size Balance removes a final 73,464 pairs. This cas-
cade ultimately yields 28,028 clear and unambiguous object
pairs.

During the training phase, the spatial relationships
between object pairs are expressed with one of 8 distinct
relationship tokens: <left>, <above>, <right>,
<below>, <left+above>, <right+above>,
<left+below>, and <right+below>. These rela-
tionships are determined based on the exact positions of
the objects, with occasional random replacements using
the <and> token to enhance robustness. For each pair,
a square region containing both objects is automatically
chosen, which is then randomly perturbed and expanded by
up to 10% before being cropped to create the final training
image paired with its corresponding text description.

A.2. Model Setups

Our experiments are conducted on four diffusion mod-
els, including three UNet-based diffusion models SD1.4!,
SD1.5%, SD2.1°, and the state-of-the-art MMDiT-based dif-
fusion model FLUX.1-dev".

For the UNet-based models, we found that incorporating
attention supervision as proposed by [71] significantly en-
hanced the convergence of the TENOR module. We there-
fore integrated this supervision across all UNet-based im-
plementations. In contrast, for the FLUX.1 model, the stan-
dard denoising loss alone was sufficient to achieve optimal
performance. Notably, our best results were achieved with
the CoMPaSS-enhanced FLUX.1 model, using a rank-16

Inttps : / / huggingface . co / CompVis / stable
diffusion-vl-4

2https://huggingface.co/stable-diffusion-v1-5/
stable-diffusion-v1-5

3https : / / huggingface . co / stabilityai / stable —
diffusion-2-1

“https://huggingface.co/black-forest-1labs/FLUX.
l1-dev

LoRA checkpoint that requires only ~50MiB on-disk stor-
age, making it highly efficient for practical applications.

Detailed training hyperparameters for all model configu-
rations are provided in Tab. A7.

B. Runtime Performance of TENOR

The TENOR module represents the only potential source
of additional computational overhead in our framework
CoMPaSS, as it injects token ordering information into each
text-image attention operation within the diffusion models.
To quantify its impact, we conducted comprehensive bench-
marking of inference latency across all model configura-
tions:

Model Latency @ 512 x 512 Overhead
SD1.4 1.17s =+ 3.04ms

SD1.4 +TENOR 1.18s =+ 7.24ms +0-85%
SD1.5 1.17s &+ 2.50ms +1.71%
SD1.5 +4TENOR 1.19s &+ 4.70ms A
SD2.1 1.13s &+ 2.50ms

SD2.1 +TENOR 1.18s = 4.70ms +4:42%
FLUX.1 17.3s + 40.6ms +2.89%

FLUX.1 +TENOR 17.8s + 88.8ms

Our measurements demonstrate that the TENOR module
has minimal impact on runtime performance, introducing
only negligible computational overhead. Even in the most
demanding case of the FLUX.1-dev model, the additional
time penalty amounts to just 2.89% of the total inference
time, making it a highly practical enhancement for real-
world applications.

C. Additional Results

C.1. Visualization of SCOP Data

We provide visualizations of data curated by SCOP in
Fig. A8.

C.2. Additional Comparisons on VISOR

We present a comprehensive comparison of VISOR metrics
against other state-of-the-art models in Tab. A10, demon-
strating the superior performance of our approach across
various evaluation criteria.

C.3. More Visual Comparisons

To provide a clear visualization of our approach’s effective-
ness, we present additional visual comparisons across eight
spatial configurations in Figs. A9 to A12. For each prompt,
we generate a total of 36 images using different model
configurations, offering a comprehensive view of how our
method consistently improves spatial understanding across
various scenarios and model architectures.
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Figure A8. Example object pairs and their corresponding bounding boxes extracted by the SCOP data engine. Each pair satisfies
our spatial constraints for Visual Significance, Semantic Distinction, Spatial Clarity, Minimal Overlap, and Size Balance, ensuring unam-
biguous spatial relationships.
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Figure A9. Additional results demonstrating spatial relationship “left”. Our method consistently improves spatial accuracy over the
baseline models.
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Figure A10. Additional results demonstrating spatial relationship “above”. Our method consistently improves spatial accuracy over
the baseline models.
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Figure A11. Additional results demonstrating spatial relationship “right”. Our method consistently improves spatial accuracy over
the baseline models.
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Figure A12. Additional results demonstrating spatial relationship “below”. Our method consistently improves spatial accuracy over
the baseline models.



Table A7. Hyperparameters used during training.

Hyperparameter SD1.4 SD1.5 SD2.1 FLUX.1
AdamW Learning Rate (LR) 5e-6 5e-6 5e-6 le-4
AdamW 4 0.9 0.9 0.9 0.9
AdamW S5 0.999 0.999 0.999 0.999
AdamW ¢ le-8 le-8 le-8 le-8
AdamW Weight Decay le-2 le-2 le-2 le-2
LR scheduler Constant Constant Constant Constant
LR warmup steps 0 0 0 20
Training Steps 24,000 24,000 80,000 24,000
Local Batch Size 1 1 1 1
Gradient Accumulation 2 2 2 2
Training GPUs 2xL40S 2x L1408 2xL40S 2xL40S
Training Resolution 512 x 512 512 x 512 512 x 512 512 x 512
Trained Parameters All parameters of diffusion UNet LoRA (rank=16) on all DoubleStreamBlocks
Prompt Dropout Probability 10% 10% 10% 10%

Table A8. Multi-object spatial relationship evaluation. De-
spite being trained only on object pairs, CoMPaSS improves the
model’s spatial accuracy on prompts involving three objects.

Model % Correct (any) % Correct (all)
SD2.1 9.1 33
SD2.1 +CoMPaSS 323 20.8
FLUX.1 30.12 13.1
FLUX.1 +CoMPaSS 52.44 31.2

C.4. Evaluation on Three-Object Compositions

To further test the generalization capabilities of CoMPaSS,
we constructed a more challenging benchmark focused
on three-object spatial configurations. This benchmark
contains 512 prompts, such as “a clock above a
broccoli, with a car to the left of the
clock”, and is evaluated using an extension of the
GenEval methodology [25]. Despite not being fine-tuned
on such complex prompts, CoMPaSS demonstrates a
significant improvement in accuracy, as detailed in Tab. AS.
This result builds upon the strong two-object performance
shown in the main paper (Tab. 2).

C.5. Detailed Benchmark Breakdown

While the main paper reported overall scores for standard
benchmarks (Tab. 2), here we provide a more granular
breakdown. Table A1l presents the full, per-task results
for T2I-CompBench, GenEval [25], and DPG-Bench [33],
offering a comprehensive performance overview.

C.6. Ablation Studies on other Models

While Tab. 6 in the main paper presented ablation studies
on SD1.5 and FLUX.1, here we extend our analysis to the

Table A9. Ablation study on the components of CoMPaSS. (i)
original models; (ii) trained with the SCOP dataset described in
Sec. 3.1 of the main paper; (iii) our full method. T2I-CompBench
Spatial (T. Spatial) and GenEval Position (G. Pos) scores are re-
ported.

Setting  Model M T. Spatial ~ G. Pos.
SCOP TENOR
@) SD1.4 0.12 0.03
(ii) SD1.4 v 0.29 0.36
(iii) SD1.4 v v 0.34 0.46
@) SD2.1 0.13 0.07
(i1) SD2.1 v 0.30 0.36
(iii) SD2.1 v v 0.32 0.51

other two UNet-based diffusion models SD1.4 and SD2.1
in Tab. A9. The results consistently demonstrate that both
components of CoMPaSS contribute to improved spatial un-
derstanding across different model architectures.



Table A10. Comparison to state-of-the-art models on the VISOR [26] benchmark. OA stands for “object accuracy”, which measures
the rate at which all prompted objects appear in the generated image.

Method uncond cond 1 2 3 4 OA

GLIDE [49] 1.98 59.06 6.72 1.02 0.17 0.03 3.36
DALLE-mini [17] 16.17 59.67 3831 17.50 6.89 1.96 27.10
CogView2 [19] 12.17 65.89 3347 1143 322 0.57 1847
Structured Diffusion [22] 17.87 6236 4470 18.73 6.57 146  28.65
DALLE-2 [57] 37.89 59.27 7359 4723 2326 749 63.93
SD1.4 18.81 6298 46.60 20.11 6.89 1.63  29.86
SD1.5 17.58 61.08 43.65 18.62 6.49 1.57 28.79
SD2.1 30.25 6324 6442 3574 16.13 470 47.83
SD2.1 +SPRIGHT [6] 4323 71.24 7178 51.88 33.09 16.15 60.68
FLUX.1 3796 66.81 64.00 44.18 28.66 1498 56.95
SD1.4 +CoMPaSS 57.41 87.58 8323 67.53 4999 2891 65.56
SD1.5 +CoMPaSS 61.46 9343 8655 72.13 54.64 3254 65.78
SD2.1 +CoMPaSS 62.06 9096 8502 71.29 56.03 3590 68.23
FLUX.1 +CoMPaSS 75.17 9322 91.73 8331 7221 5341 78.64

Table A11. Evaluation results of general generation capabilities across a wide range of tasks on GenEval [25], T2I-CompBench [35],
and DPG-Bench [33]. While designed to target spatial performance, CoMPaSS also improves overall (Ovr.) alignment scores across most
tasks.

Method T2I-CompBench GenEval DPG-Bench

Spat. Col. Shp. Tex. N.Sp. Pos. S.O. TO. Count Col. Attr. Ovr. Rel. GIb. Ent. Attr. Other Ovr.
SD1.4 012 038 036 042 031 003 098 041 034 074 006 043 81.04 7812 7223 7256 59.60 62.02
SD1.4 +CoMPaSS 034 049 043 053 031 046 099 068 034 073 017 0.56 83.21 7933 7533 72.09 68.00 66.07
SD1.5 0.08 038 037 042 031 004 096 038 036 075 006 042 7349 7463 7423 7539 67.81 63.18
SD1.5 +CoMPaSS 035 050 043 052 031 054 099 069 034 072 015 0.57 84.10 8267 7520 73.58 60.80 65.81
SD2.1 0.13 051 042 049 031 0.07 098 051 044 085 0.17 050 8395 81.16 7447 7529 53.60 6547

SD2.1 +SPRIGHT [6]  0.21 - - - - 0.11 099 059 049 085 0.15 0.51 - - - - - -
SD2.1 +CoMPaSS 032 055 043 054 030 051 099 069 020 071 0.15 054 8654 7994 7889 7539 62.80 69.48

FLUX.1 0.18 0.69 048 063 031 02 092 077 071 066 027 060 9230 80.55 87.74 8555 7840 80.63
FLUX.1 +CoMPaSS 030 083 059 071 032 060 099 087 071 080 0.76 0.76 94.12 8298 90.53 8830 82.80 84.42




