
Appendix

A. Additional Training Details

A.1. SCOP Dataset Construction

The optimal threshold values for the SCOP data en-

gine were empirically determined to be {τv, τu, τo, τs} =
{0.2, 2.0, 0.3, 0.5} through grid search. We then applied

these thresholds to process the COCO training split [43],

resulting in the curated SCOP dataset. The initial Relation-

ship Reasoning stage identifies 2,468,858 object pairs with

their corresponding spatial relationships. The subsequent

Spatial Constraints Enforcement stage systematically filters

these pairs. This process applies a series of increasingly

stringent criteria: Visual Significance eliminates 1,929,560

pairs, Semantic Distinction removes 169,973, Spatial Clar-

ity filters out 119,457, Minimal Overlap excludes 148,376,

and Size Balance removes a final 73,464 pairs. This cas-

cade ultimately yields 28,028 clear and unambiguous object

pairs.

During the training phase, the spatial relationships

between object pairs are expressed with one of 8 distinct

relationship tokens: <left>, <above>, <right>,

<below>, <left+above>, <right+above>,

<left+below>, and <right+below>. These rela-

tionships are determined based on the exact positions of

the objects, with occasional random replacements using

the <and> token to enhance robustness. For each pair,

a square region containing both objects is automatically

chosen, which is then randomly perturbed and expanded by

up to 10% before being cropped to create the final training

image paired with its corresponding text description.

A.2. Model Setups

Our experiments are conducted on four diffusion mod-

els, including three UNet-based diffusion models SD1.41,

SD1.52, SD2.13, and the state-of-the-art MMDiT-based dif-

fusion model FLUX.1-dev4.

For the UNet-based models, we found that incorporating

attention supervision as proposed by [71] significantly en-

hanced the convergence of the TENOR module. We there-

fore integrated this supervision across all UNet-based im-

plementations. In contrast, for the FLUX.1 model, the stan-

dard denoising loss alone was sufficient to achieve optimal

performance. Notably, our best results were achieved with

the CoMPaSS-enhanced FLUX.1 model, using a rank-16
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LoRA checkpoint that requires only ∼50MiB on-disk stor-

age, making it highly efficient for practical applications.

Detailed training hyperparameters for all model configu-

rations are provided in Tab. A7.

B. Runtime Performance of TENOR

The TENOR module represents the only potential source

of additional computational overhead in our framework

CoMPaSS, as it injects token ordering information into each

text-image attention operation within the diffusion models.

To quantify its impact, we conducted comprehensive bench-

marking of inference latency across all model configura-

tions:

Model Latency @ 512× 512 Overhead

SD1.4 1.17s ± 3.04ms
+0.85%

SD1.4 +TENOR 1.18s ± 7.24ms

SD1.5 1.17s ± 2.50ms
+1.71%

SD1.5 +TENOR 1.19s ± 4.70ms

SD2.1 1.13s ± 2.50ms
+4.42%

SD2.1 +TENOR 1.18s ± 4.70ms

FLUX.1 17.3s ± 40.6ms
+2.89%

FLUX.1 +TENOR 17.8s ± 88.8ms

Our measurements demonstrate that the TENOR module

has minimal impact on runtime performance, introducing

only negligible computational overhead. Even in the most

demanding case of the FLUX.1-dev model, the additional

time penalty amounts to just 2.89% of the total inference

time, making it a highly practical enhancement for real-

world applications.

C. Additional Results

C.1. Visualization of SCOP Data

We provide visualizations of data curated by SCOP in

Fig. A8.

C.2. Additional Comparisons on VISOR

We present a comprehensive comparison of VISOR metrics

against other state-of-the-art models in Tab. A10, demon-

strating the superior performance of our approach across

various evaluation criteria.

C.3. More Visual Comparisons

To provide a clear visualization of our approach’s effective-

ness, we present additional visual comparisons across eight

spatial configurations in Figs. A9 to A12. For each prompt,

we generate a total of 36 images using different model

configurations, offering a comprehensive view of how our

method consistently improves spatial understanding across

various scenarios and model architectures.
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Figure A8. Example object pairs and their corresponding bounding boxes extracted by the SCOP data engine. Each pair satisfies

our spatial constraints for Visual Significance, Semantic Distinction, Spatial Clarity, Minimal Overlap, and Size Balance, ensuring unam-

biguous spatial relationships.
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Figure A9. Additional results demonstrating spatial relationship “left”. Our method consistently improves spatial accuracy over the

baseline models.
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Figure A10. Additional results demonstrating spatial relationship “above”. Our method consistently improves spatial accuracy over

the baseline models.
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Figure A11. Additional results demonstrating spatial relationship “right”. Our method consistently improves spatial accuracy over

the baseline models.
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Figure A12. Additional results demonstrating spatial relationship “below”. Our method consistently improves spatial accuracy over

the baseline models.



Table A7. Hyperparameters used during training.

Hyperparameter SD1.4 SD1.5 SD2.1 FLUX.1

AdamW Learning Rate (LR) 5e-6 5e-6 5e-6 1e-4

AdamW β1 0.9 0.9 0.9 0.9

AdamW β2 0.999 0.999 0.999 0.999

AdamW ϵ 1e-8 1e-8 1e-8 1e-8

AdamW Weight Decay 1e-2 1e-2 1e-2 1e-2

LR scheduler Constant Constant Constant Constant

LR warmup steps 0 0 0 20

Training Steps 24,000 24,000 80,000 24,000

Local Batch Size 1 1 1 1

Gradient Accumulation 2 2 2 2

Training GPUs 2×L40S 2×L40S 2×L40S 2×L40S

Training Resolution 512× 512 512× 512 512× 512 512× 512
Trained Parameters All parameters of diffusion UNet LoRA (rank=16) on all DoubleStreamBlocks

Prompt Dropout Probability 10% 10% 10% 10%

Table A8. Multi-object spatial relationship evaluation. De-

spite being trained only on object pairs, CoMPaSS improves the

model’s spatial accuracy on prompts involving three objects.

Model % Correct (any) % Correct (all)

SD2.1 9.1 3.3

SD2.1 +CoMPaSS 32.3 20.8

FLUX.1 30.12 13.1

FLUX.1 +CoMPaSS 52.44 31.2

C.4. Evaluation on Three­Object Compositions

To further test the generalization capabilities of CoMPaSS,

we constructed a more challenging benchmark focused

on three-object spatial configurations. This benchmark

contains 512 prompts, such as “a clock above a

broccoli, with a car to the left of the

clock”, and is evaluated using an extension of the

GenEval methodology [25]. Despite not being fine-tuned

on such complex prompts, CoMPaSS demonstrates a

significant improvement in accuracy, as detailed in Tab. A8.

This result builds upon the strong two-object performance

shown in the main paper (Tab. 2).

C.5. Detailed Benchmark Breakdown

While the main paper reported overall scores for standard

benchmarks (Tab. 2), here we provide a more granular

breakdown. Table A11 presents the full, per-task results

for T2I-CompBench, GenEval [25], and DPG-Bench [33],

offering a comprehensive performance overview.

C.6. Ablation Studies on other Models

While Tab. 6 in the main paper presented ablation studies

on SD1.5 and FLUX.1, here we extend our analysis to the

Table A9. Ablation study on the components of CoMPaSS. (i)

original models; (ii) trained with the SCOP dataset described in

Sec. 3.1 of the main paper; (iii) our full method. T2I-CompBench

Spatial (T. Spatial) and GenEval Position (G. Pos) scores are re-

ported.

Setting Model
Components

T. Spatial G. Pos.
SCOP TENOR

(i) SD1.4 0.12 0.03

(ii) SD1.4 ✓ 0.29 0.36

(iii) SD1.4 ✓ ✓ 0.34 0.46

(i) SD2.1 0.13 0.07

(ii) SD2.1 ✓ 0.30 0.36

(iii) SD2.1 ✓ ✓ 0.32 0.51

other two UNet-based diffusion models SD1.4 and SD2.1

in Tab. A9. The results consistently demonstrate that both

components of CoMPaSS contribute to improved spatial un-

derstanding across different model architectures.



Table A10. Comparison to state-of-the-art models on the VISOR [26] benchmark. OA stands for “object accuracy”, which measures

the rate at which all prompted objects appear in the generated image.

Method uncond cond 1 2 3 4 OA

GLIDE [49] 1.98 59.06 6.72 1.02 0.17 0.03 3.36

DALLE-mini [17] 16.17 59.67 38.31 17.50 6.89 1.96 27.10

CogView2 [19] 12.17 65.89 33.47 11.43 3.22 0.57 18.47

Structured Diffusion [22] 17.87 62.36 44.70 18.73 6.57 1.46 28.65

DALLE-2 [57] 37.89 59.27 73.59 47.23 23.26 7.49 63.93

SD1.4 18.81 62.98 46.60 20.11 6.89 1.63 29.86

SD1.5 17.58 61.08 43.65 18.62 6.49 1.57 28.79

SD2.1 30.25 63.24 64.42 35.74 16.13 4.70 47.83

SD2.1 +SPRIGHT [6] 43.23 71.24 71.78 51.88 33.09 16.15 60.68

FLUX.1 37.96 66.81 64.00 44.18 28.66 14.98 56.95

SD1.4 +CoMPaSS 57.41 87.58 83.23 67.53 49.99 28.91 65.56

SD1.5 +CoMPaSS 61.46 93.43 86.55 72.13 54.64 32.54 65.78

SD2.1 +CoMPaSS 62.06 90.96 85.02 71.29 56.03 35.90 68.23

FLUX.1 +CoMPaSS 75.17 93.22 91.73 83.31 72.21 53.41 78.64

Table A11. Evaluation results of general generation capabilities across a wide range of tasks on GenEval [25], T2I-CompBench [35],

and DPG-Bench [33]. While designed to target spatial performance, CoMPaSS also improves overall (Ovr.) alignment scores across most

tasks.

Method
T2I-CompBench GenEval DPG-Bench

Spat. Col. Shp. Tex. N.Sp. Pos. S.O. T.O. Count Col. Attr. Ovr. Rel. Glb. Ent. Attr. Other Ovr.

SD1.4 0.12 0.38 0.36 0.42 0.31 0.03 0.98 0.41 0.34 0.74 0.06 0.43 81.04 78.12 72.23 72.56 59.60 62.02

SD1.4 +CoMPaSS 0.34 0.49 0.43 0.53 0.31 0.46 0.99 0.68 0.34 0.73 0.17 0.56 83.21 79.33 75.33 72.09 68.00 66.07

SD1.5 0.08 0.38 0.37 0.42 0.31 0.04 0.96 0.38 0.36 0.75 0.06 0.42 73.49 74.63 74.23 75.39 67.81 63.18

SD1.5 +CoMPaSS 0.35 0.50 0.43 0.52 0.31 0.54 0.99 0.69 0.34 0.72 0.15 0.57 84.10 82.67 75.20 73.58 60.80 65.81

SD2.1 0.13 0.51 0.42 0.49 0.31 0.07 0.98 0.51 0.44 0.85 0.17 0.50 83.95 81.16 74.47 75.29 53.60 65.47

SD2.1 +SPRIGHT [6] 0.21 - - - - 0.11 0.99 0.59 0.49 0.85 0.15 0.51 - - - - - -

SD2.1 +CoMPaSS 0.32 0.55 0.43 0.54 0.30 0.51 0.99 0.69 0.20 0.71 0.15 0.54 86.54 79.94 78.89 75.39 62.80 69.48

FLUX.1 0.18 0.69 0.48 0.63 0.31 0.26 0.92 0.77 0.71 0.66 0.27 0.60 92.30 80.55 87.74 85.55 78.40 80.63

FLUX.1 +CoMPaSS 0.30 0.83 0.59 0.71 0.32 0.60 0.99 0.87 0.71 0.80 0.76 0.76 94.12 82.98 90.53 88.30 82.80 84.42


