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Intra-Class and Inter-Class Correlations. We explore
the impact of inter- and intra-class correlations on CLIP’s
segmentation capabilities on other datasets, as shown in
Fig. 1. Consistent with the findings in the main text, intra-
class correlations can significantly enhance CLIP’s segmen-
tation performance, while inter-class correlations impair its
segmentation capability.

Performance on Out-of-Distribution Datasets. Fully-
supervised methods [4, 10] are typically trained on the
COCO dataset, which shares high similarity with the five
datasets used in the main text. This setup, however, does not
adequately showcase the full potential of OVSS. Therefore,
we conduct additional evaluations on a selection of datasets
from the MESS benchmark [2] that deviate from the COCO
distribution. As shown in Tab. 1, CorrCLIP outperforms the
fully-supervised method on these datasets, demonstrating
that it effectively leverages CLIP’s open-vocabulary capa-
bilities.

Discussion on Spatial Branch. In ViT, patch features
are progressively transformed through successive layers,
which critically employ residual connections. This design
ensures that features from lower layers are directly added to
higher-level ones, thereby retaining a degree of similarity to
the features in the final layer and serving as a complement
to the final patch features. As demonstrated in Tab. 2, the
respectable segmentation performance achieved using only
the Spatial Branch corroborates this hypothesis. However,
the results on the COCO dataset, indicate that feature mis-
alignment can still lead to performance degradation. Thus,
there is still scope for refining this approach, for example,
by selectively selecting the most suitable lower layers’ fea-
tures.

Computational Analysis. While the main body of this
work focused on enhancing the CLIP model’s segmentation
capabilities, computational efficiency was not a primary de-
sign constraint. We now turn to an analysis of the computa-
tional cost associated with each component of our method
and suggest avenues for its improvement.

The primary computational burden stems from the num-
ber of SAM sampling points as shown in Tab. 3. Reduc-
ing uniform sampling from 32×32 to 8×8 substantially im-
proves processing speed with only marginal performance
degradation, indicating that many sampled points are repet-
itive and optimizing sampling strategies is a key direction
for acceleration. Another critical avenue for speed improve-
ment lies in the adoption of a more efficient mask generator.

The computational cost of Map Correction is due to the

Method FoodSeg103 [14] ATLANTIS [5] CUB-200 [13] SUIM [6]

OVSeg-L [10] 16.4 33.4 14.0 38.2
CAT-Seg-L [4] 30.5 33.6 9.2 54.0

CorrCLIP-L 36.5 +6.0 40.1 +6.5 31.3 +17.3 58.0 +4.0

Table 1. Comparison with fully-supervised methods on some
datasets in MESS.

Branch VOC20 PC59 Stuff ADE City

Main 88.7 46.2 30.6 25.3 48.3

Spatial 74.5 43.8 27.7 24.1 46.3

Table 2. Segmentation performance achieved using only the Spa-
tial Branch.

cyclic updating of categories in the mask. Designing a par-
allel algorithm can further improve its speed.

The computational overhead of Feature Refinement
arises from the addition of extra mask class tokens. The
computational burden of Value Reconstruction stems from
incorporating the DINO model, which can be mitigated by
adopting smaller model variants (e.g., “DINO-S”) to en-
hance speed and reduce memory footprint.

The clustering algorithm employed in Mask Merging is
currently implemented on the CPU, with the potential for
future acceleration through the use of GPU.

To enhance the real-world applicability of CorrCLIP, we
implement two modifications to mitigate its high computa-
tional cost. First, we substitute SAM with more efficient
mask generators. Second, we streamline CorrCLIP by re-
moving mask merging and value reconstruction, resulting
in a speed increase with an acceptable performance loss. As
a result, CorrCLIP now achieves inference speeds compara-
ble to, or even exceeding, those of ProxyCLIP and Trident,
while retaining superior performance. Note that EoMT [7]
and EntitySeg [11] perform better because they are better
suited for our method’s whole-image segmentation needs
than SAM, which is designed for promptable segmentation.

More Qualitative Comparisons. We provide more
qualitative comparisons between our CorrCLIP and exist-
ing methods, including ClearCLIP [8], ProxyCLIP [9], SC-
CLIP [1], and Trident [12] in Figs. 2 to 6. Through explicit
interaction scope restriction, our approach successfully cor-
rects misclassifications that persist in other methods. Ad-
ditionally, CorrCLIP exhibits three notable advantages: su-
perior object continuity preservation, effective noise sup-
pression, and enhanced robustness in challenging scenar-



Figure 1. Impact of intra-class and inter-class correlations on CLIP’s segmentation capability on the other seven benchmarks and the
average of all benchmarks.

Method Time(ms/image) ↓ Memory(MB) ↓ Parameter(M) ↓ Performance(mIoU) ↑
ClearCLIP [8] 19 718 150 38.1
ProxyCLIP [9] 69 1936 235 42.3
Trident [12] 81 2487 364 45.8

Sampled Points: 8×8
+ Sope Reconsturction 116 2674 373 45.3
+ Map Correction 119 2674 373 47.5
+ Feature Refinement 132 2674 373 49.7
+ Value Reconstruction 170 2997 458 50.2
+ Mask Merging 177 2997 458 50.4

Sampled Points: 32×32
+ Sope Reconstruction 1111 2902 373 46.8
+ Map Correction 1115 2902 373 49.2
+ Feature Refinement 1129 2902 373 50.5
+ Value Reconstruction 1168 3208 458 50.8
+ Mask Merging 1258 3208 458 51.0

Faster Version
CorrCLIP M2F 81 1765 366 49.2
CorrCLIP EoMT 56 1818 466 51.6
CorrCLIP EntitySeg 78 1100 197 51.1

Table 3. Computational costs on RTX 4090 with FP16. Performance is average mIoU across eight benchmarks. The blue subscript
indicates the mask generator. M2F (Mask2Former [3]) uses a Swin-L backbone, and EoMT uses ViT-L; both are pretrained on COCO
Panoptic. EntitySeg uses a Swin-T backbone.

ios where alternative methods often exhibit fragmentation
or semantic inconsistency. These qualitative results cor-
roborate our method’s capability to establish more reliable
visual-semantic correspondences.
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Figure 2. More qualitative comparison of segmentation maps between our method, CorrCLIP, and the other four methods on Object.
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Figure 3. More qualitative comparison of segmentation maps between our method, CorrCLIP, and the other four methods on VOC21.
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Figure 4. More qualitative comparison of segmentation maps between our method, CorrCLIP, and the other four methods on PC60.
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Figure 5. More qualitative comparison of segmentation maps between our method, CorrCLIP, and the other four methods on ADE.
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Figure 6. More qualitative comparison of segmentation maps between our method, CorrCLIP, and the other four methods on City.
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