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Supplementary Material

In this material, we provide additional details, analysis,
and visualisations regarding our method.

6. Further Details
Datasets. We evaluate the proposed method on the
CIFAR-100 [29] and ImageNet-1k [12] datasets for image
classification, following OFA [22]. CIFAR-100 contains
50k 32 × 32 resolution images in 100 classes for training
and 10k images for testing. ImageNet-1k includes 224×224
resolution images in 1,000 classes, of which 1.2 million im-
ages are for training and 50k for validation.

Implementation. For the RSD loss, since there are much
more off-diagonal elements than diagonal elements, in prac-
tice we scale down the contribution of the decorrelation loss
by a factor of κ. We set the default value of κ to 0.01, fol-
lowing Zbontar et al. [72], and tune it for ImageNet-1k ex-
periments. For the MLP capacity in the AAD module, we
adopt an expansion rate of 2 for CIFAR-100 experiments,
and 4 for ImageNet-1k experiments by default. As for λ,
we set it to 0.1 for CIFAR-100 and 0.01 for ImageNet-1k
experiments, and tune it where necessary.

Training. We follow the same configurations as in
OFA [22]. All images are resized to 224 × 224 as in-
put. CNN students are trained using the SGD optimiser,
whereas ViT and MLP students are trained using AdamW.
We train all models for 300 epochs on CIFAR-100. We use
a batch size of 128 for CNN students, and a batch size of
512 for ViT and MLP students. For ImageNet-1k, we train
CNN students for 100 epochs with a batch size of 64 and
ViT or MLP students for 300 epochs with a batch size of
128. All experiments are conducted using 8 NVIDIA A800
GPUs. All experimental results reported are the average
top-1 accuracy of 3 independent runs. When taking the
efficiency measurements, we use a local workstation with
20 Intel Core i9-10850K CPUs (10 cores) and an NVIDIA
RTX 3090 GPU.

7. Further Analysis
Sensitivity to RSD loss weight λ. We explore how sen-
sitive the proposed method is to different values of the loss
weighting hyperparameter, λ. Compared to OFA and other
generic KD methods, we find that our method is reasonably
robust to varying λ, as demonstrated in Table 9. It consis-
tently outperforms OFA with significant margin with differ-
ent values of λ. While tuning this hyperparameter may lead

λ 0.05 0.075 0.1 0.15 0.2

Swin-T→ResNet18 83.36 83.80 83.92 84.10 83.75
Mixer-B/16→DeiT-T 78.16 78.53 78.50 78.60 78.48

ConvNeXt-T→ResMLP-S12 84.36 84.41 84.21 83.77 83.74

Table 9. Sensitivity to varying RSD loss weight λ.

γ 1/2 1 2 4 6

Swin-T→ResNet18 83.78 84.20 83.92 83.98 84.21
Mixer-B/16→DeiT-T 77.53 78.53 78.50 78.75 79.30

ConvNeXt-T→ResMLP-S12 82.92 83.33 84.21 84.06 84.18

Table 10. Sensitivity to varying AAD expansion rate γ.

Design Swin-T→
ResNet18

Mixer-B/16→
DeiT-T

ConvNeXt-T→
ResMLP-S12

OFA 80.54 73.90 81.22

w/o Norm. 82.90 75.87 81.73
Norm. 83.92 78.50 84.21

MSE 83.92 78.50 84.21
Huber 83.83 78.40 84.30

κ = 0 83.90 78.50 83.54
κ = 0.001 83.73 78.78 83.81
κ = 0.01 83.92 78.50 84.21
κ = 0.02 84.01 77.42 84.01

Table 11. Effect of other design choices in RSD.

to even better performance, as shown in Table 9, we stick to
our default value of λ = 0.1 for CIFAR-100 experiments to
save laborious tuning efforts and facilitate generalisation.

Sensitivity to AAD expansion rate γ. We are interested
to study how larger projectors with higher capability may
impact the distillation performance of RSD. Let us denote
the dimension expansion rate by γ. We experiment with dif-
ferent values of γ in Table 10. It can be observed that the
performance of our method is relatively robust to varying
capacities of the AAD module. A weak AAD module may
become the performance bottleneck as it struggles to learn
more useful representations according to the RSD criterion,
but is still superior to OFA. A more capable AAD module
tends to give better results, although it is not always the
case. We postulate that when the AAD module is stronger,
there is a greater decoupling effect. This may cause the
student’s internal representations to be insufficiently influ-
enced by the RSD objective, thereby leading to degraded
performance on the Mixer-B/16-to-DeiT-T set-up.

Other design considerations. In Table 11, we present
further ablation studies to examine other design choices in-
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Figure 5. Visualisation of heterogeneous feature similarities via CKA across different teacher and student architectures. Top: ConvNeXt-T
teacher and ResMLP-S12 student. Bottom: ViT-S teacher and MobileNetV2 student.

volved in our RSD formulation. We find that the normal-
isation operation in computing Pearson correlation coeffi-
cients helps improve learning, and removing it leads to per-
formance degradation. RSD is also robust to the choice of
the distance measure used in pulling the cross-architecture
Pearson correlations towards the redundancy suppression
target. κ modulates the importance of the decorrelation ob-
jective in RSD. When κ = 0, we completely give up decor-
relating the feature dimensions. We observe that a very
large κ degrades the performance, as the decorrelation ob-
jective overwhelms the invariance maximisation objective.
Removing the decorrelation objective tends to hurt the per-
formance.

Link to contrastive distillation. The proposed RSD ob-
jective shares some spirit with contrastive knowledge distil-
lation, as both can be interpreted from an information bot-
tleneck theory perspective [11, 17]. Essentially, one may
also consider RSD as a form of contrastive learning at the
level of semantic units. For RSD applied to the 1D rep-
resentation embeddings, each value within the embedding
is a feature unit that encodes distinct semantic knowledge.
In this case, the batch-wise distributional pattern of each
student semantic unit is maximally similar to its hetero-
geneous counterpart of the teacher, while those for other
features units are maximally decorrelated. When RSD is
applied over intermediate 2D feature maps, each semantic
unit corresponds to the activation at a certain spatial lo-
cation and a specific channel. Therefore, RSD effectively
maximises the correlation between teacher and student ac-
tivation distributions of the same spatial location and chan-
nel, while decorrelating those of different spatial locations
and channels. In contrast, contrastive distillation methods

are constrained to utilising sample-level contrastive learn-
ing, maintaining negative samples using a memory bank,
and pulling apart negative samples, which makes them a
vastly different group of methods than RSD. Additionally,
we made attempts to make off-diagonal correlations in P
anti-correlated rather than decorrelated, which should echo
the idea of maximising dissimilarity between positive and
negative samples, but obtained inferior performance.

CKA visualisation. We present higher-resolution visual-
isations for the CKA plots in the main text. Compared to
OFA, our method can improve the heterogeneous feature
similarity throughout the intermediate layers even though
it does not directly access or process the intermediate fea-
tures. Our method also effectively boosts feature similarity
towards the final layers of the network.
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