—Supplementary Material—
CryoFastAR: Fast Cryo-EM Ab
initio Reconstruction Made
Easy

A. Additional Results

We compare the visual results of our method with baselines
methods on the simulated Spliceosome [5] dataset. The re-
sults are shown in Figure 2, and the quantitative results are
presented in Table 1 of the paper.

B. Details of Dataset

The generation process for the simulated dataset follows the
procedure outlined in Section E, under the paragraph titled
Simulated Particle Image Generation, with some differ-
ences in the number of structures used and the number of
projections.

B.1. Simulated dataset.

We generate 3 simulated datasets for evaluation of the base-
lines. Each dataset has the same simulation procedure:
1) generating 50000 particles with uniformly sampled ro-
tations, 2) adding CTF corruption 3) translating image in
[—10,10] pixels along x and y axes, respectively, 4) add
Gaussian noise to adjust the signal-to-noise ratio (SNR) of
the image to 0.1. Each structure in the dataset has a differ-
ent spatial resolution in terms of A per pixel(Apix) when
the PDB [1] structure is converted into a volume density
map using EMAN?2 [11]. The PDB ID and Apix for each
dataset is as follows:
e The spliceosome structure (Spliceosome, PDB ID:
Snrl) [5]. Apix: 4.00.
* A variant of the SARS-CoV-2 spike protein (Spike, PDB
ID: 7sbr) [12]. Apix: 2.03.
¢ the human Fanconi anaemia core complex (FA, PDB ID:
Tkzp) [13]. Apix: 2.54.

B.2. Experimental dataset.

For the experimental evaluation, we test on three datasets
(EMPIAR-10049, EMPIAR-10076, and EMPIAR-10180)
from EMPIAR [3]. After processing these datasets using
the scripts provided by CryoDRGN-EMPIAR [14], we ob-
tain the filtered particle stacks, along with the pre-computed
accurate particle poses and 2D in-plane translations. We
assume that the reconstructed structures, using the pre-
computed poses and translations provided by the datasets,
represent the ground-truth volume. The particles are then

split into two sets: 30,000 particles for training and the re-
maining particles for evaluation. The number of images in
the evaluation set and the Apix for each dataset are as fol-
lows:

* The RAG1-RAG2 complex (RAG, EMPIAR-10049) [8].
Apix: 1.845, number particles in the evaluation set:
78544.

* The assembling bacterial 50S ribosome (50S, EMPIAR-
10076) [2]. Apix: 3.275, number particles in the evalua-
tion set: 57327.

* The pre-catalytic spliceosome (Spliceosome, EMPIAR-
10180) [4]. Apix: 4.25, number particles in the evaluation
set: 109722.

B.3. Contrast Transfer Function

In cryo-electron microscopy (cryo-EM), the imaging pro-
cess is influenced by the point spread function (PSF), which
characterizes the system’s spatial response to a point source.
The PSF encapsulates the effects of diffraction, aberrations,
and other instrumental imperfections, thereby determining
how the interactions between the high-energy electron beam
and the specimen are distributed in the final image in real
space.

For image processing and analysis, it is often advanta-
geous to work in the frequency domain, typically by ap-
plying a Fourier or Hartley transform. In this domain, the
Fourier transform of the PSF is referred to as the Con-
trast Transfer Function (CTF), which describes how differ-
ent spatial frequency components are modulated by the mi-
croscope’s optics.

In our work, instead of applying the PSF directly, we in-
corporate its effects through the CTF. This approach simpli-
fies the image processing workflow by enabling us to oper-
ate entirely in the frequency domain. Following the method-
ology implemented in CTFFIND4 [7], the CTF is defined
as:

CTF(w, \, g, Af,Cs, Ap) =
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In these equations, w represents the relative phase contrast
factor, while x is a frequency-dependent phase shift func-
tion. The function x incorporates key parameters, includ-
ing the electron wavelength )\, the spatial frequency vector
g, the objective defocus Af, the spherical aberration Cj,
and the phase shift Ap. The parameters w, A, Cs, and Ay
are intrinsic to the cryo-EM hardware.
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Figure 2. Qualitative Result. We compare our visual quality with all other baselines before and after the refinement for Spliceosome’s
simulated dataset. The results show that our method is comparable to them before refinement and achieves the best performance after the

refinement.

C. Details of Baselines

CryoSPIN [9]. We use the official implementation of
CryoSPIN in Github. In our experiments, we run CryoSPIN
with its default setting while using our customized datasets
as described in the main paper. Also, the official implemen-
tation does not include the estimation of the in-plane trans-
lation, we omit the random shift when training CryoSPIN.
As CryoSPIN often falls to local minima, we run it three
times per experiment and report the best result.

CryoDRGN2 [15]. We use the official implementation of
CryoDRGN v3.4.3 in Github, with all default parameter
values, except setting the batch size to 32 while using the
‘abinit_homo’ command for ab initio.

CryoSPARC [6]. We use the CryoSPARC software pack-
age v4.6.2. with all default parameter values. We followed
the typical workflow: Import particle stacks and then per-
form ab initio reconstruction.

CryoSPARC(refined). We use the CryoSPARC software
package v4.6.2. with all default parameter values for
refinement. We use the result mentioned in paragraph
CryoSPARC, continuously performs Homogeneous Re-
fine, and finally a Local Refinement.

Ours(refined). We use the CryoSPARC software package
v4.6.2 with all default parameter values for refinement. We
use Import Particles, and then Reconstruction Only to gen-
erate volumes and masks for the future usage, and then run
Local Refinement.

D. Details of Evaluation Metrics

Rotation F-norm error. Given a sequence of ground-
truth 3D orientations R1,..., Ry and a sequence of esti-
mated 3D orientations Rl ey R ~, we randomly select one
view, indexed as ¢, to serve as the reference view. To report
the F-norm rotation errors for each dataset, we randomly
sample 5,000 views as reference views and select the min-
imum error as the final result. For each random selection
i, all ground-truth poses are transformed into the coordi-
nate system of this reference view: RL ;o RiRjT,Vj =
{1,..., N}. Similarly, all predicted poses are transformed
into the coordinate system of the reference view of the
i-th predicted pose: ]A%;J — Rif%jT,Vj = {1,...,N}.
The error for each view is then computed by taking the
Frobenius norm of the difference between the transformed
ground-truth pose and the corresponding transformed pre-
dicted pose. Finally, the average of these errors across all
views is computed:

N
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In-plane translation error. Given a ground-truth 2D in-
plane translation t = (¢,,t,) and an estimated translation
t = (t;,1,), we compute the mean of the L2-norm:

Lo(t,t) = ||t — |2 4)

We report the average of the L2 translation errors over each
dataset.

Resolution. The reconstruction resolution is calculated
using the Fourier Shell Correlation (FSC) between the


https://github.com/shekshaa/semi-amortized-cryoem
https://github.com/ml-struct-bio/cryodrgn

aligned reconstructed and ground-truth volumes, with
thresholds of 0.5 for simulated data and 0.143 for experi-
mental data serving as the metric for pose estimation recon-
struction resolution. The formula for FSC is given below:
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where F1, F; are the Fourier transforms of the reconstructed
and ground-truth volumes, respectively. 7 represents all
three-dimensional frequency components shown in a one-
dimensional form. We use CryoSPARC’s Align 3D Maps to
automatically align the ground-truth volume with the other
reconstructed volume.

E. Details of Simulated Training Dataset Con-
struction

Data Curation. The data curation pipeline for our atomic
structure dataset is designed to obtain high-quality and
biologically correct 3D structures from the Protein Data
Bank(PDB) [1]. The process involves several key steps,
including parsing, metadata extraction, filtering, and struc-
tural refinement.

Parsing and Metadata Extraction The initial step in-
volves parsing the input files in the mmCIF format. The
pipeline extracts essential metadata, including the release
date, resolution, and experimental method. These metadata
are crucial for ensuring the relevance and reliability of the
structures included in the dataset.

Filtering Criteria The dataset is subjected to stringent

filtering criteria to ensure the quality and suitability of the

structures for downstream analysis. The filtering process

includes:

* Release Date: Structures must have been released to the
PDB before the cutoff date of 2021-09-30.

* Resolution: Only structures with a reported resolution of
9A or less are retained.

* Hydrogen Removal: Hydrogen atoms are removed from
the structures.

e Polymer Chain Integrity: Polymer chains with all un-
known residues are removed.

¢ Clashing Chains: Chains with more than 30% of atoms
within 1.7A  of an atom in another chain are identified
as clashing. In cases where two chains are clashing, the
chain with the greater percentage of clashing atoms is re-
moved. If the same fraction of atoms are clashing, the
chain with fewer total atoms is removed. If the chains
have the same number of atoms, the chain with the larger
chain ID is removed.

* Residue and Small Molecule Integrity: For residues or
small molecules with CCD codes, atoms outside of the
CCD code’s defined set of atom names are removed.
Protein chains with consecutive C'a; atoms larger than
10A apart are filtered out.

* Bioassembly Selection: For bioassemblies with more
than 20 chains, a random interface token is selected, en-
suring that the center atom is within 15A of the center
atom of a token in another chain.

Structural Refinement To simplify subsequent analysis,
the pipeline performs basic structural cleanup. This in-
cludes resolving alternative locations for atoms/residues by
selecting the one with the largest occupancy and removing
water and crystallization aids. Ligands, peptides, and nu-
cleic acids are also removed to focus on the core protein
structures.

Simulated Particle Image Generation We begin with
the 113,600 curated 3D atomic structures and generate
noisy projection images for training through the following
steps: For each 3D structure, we convert it into a 1283 3D
volume density map using EMAN2 [11], the pixel size is
set by the maximum length of the structure to make sure
the whole structure is inside. Then we uniformly sample
100 projection images in SO(3) space, representing differ-
ent views of the volume. Each clean projection image is
then modified by randomly applying a Contrast Transfer
Function (CTF) sampled from real distribution including
152,385 CTF parameters as described in [10], simulating
imaging system imperfections such as aberrations or blur-
ring. A random 2D shift, within the range of [—10, 10]?, is
applied to each image to account for potential translational
errors during imaging. Finally, Gaussian noise is added
to each image to ensure the signal-to-noise ratio (SNR)
matches the desired level, simulating the noise character-
istics in experimental data. This augmentation pipeline pro-
duces diverse, realistic projections for model training.
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