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1. MetaCamera Details

1.1. Fabrication

To achieve an ultra-compact imaging system, a nano-lens
metasurface optical design is employed and integrated with a
miniaturized image sensor (OV6946, OmniVision Technolo-
gies). Traditional imaging systems rely on bulky refractive
optics, which limit miniaturization. In contrast, the use of
a planar nano-lens metasurface enables ultra-thin imaging,
significantly reducing the system’s size while maintaining
effective wavefront control.

As shown in Fig. 2, the nano-lens consist of a periodic
array of subwavelength-scale nano-pillars, where the local
phase response is determined by the geometric parameters
of each pillar. The phase modulation follows a differentiable
polynomial function[1]:
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where A is the incident light wavelength (in nm), and 7
represents the duty cycle of the nano-pillars. The height
of the nano-lens is 705 nm, and the diameter of the whole
nano-lens is 200 um, approximately comprising 571 x 571
units.

To optimize the optical performance, Finite-Difference
Time-Domain (FDTD) simulations are conducted, and a Neu-
ral Nano-Optics approach is employed to refine the nano-lens
structure. The fabrication process involves Electron-Beam
Lithography (E-beam Lithography) on a 705 nm-thick sil-
icon nitride (SigNy) layer deposited on a fused silica sub-
strate.

The processed optical signals are captured by the OV6946
image sensor, which provides digital readout through an
ADC chip (OV426, OmniVision Technologies). By lever-
aging this metasurface optical approach, the entire imaging
module achieves a compact form factor of approximately 1
mm in size.
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Figure 1. (a) Comparison between our MetaCamera system and the
iPhone camera module. (b) Longitudinal cross-sectional schematic.
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Figure 2. (a) Schematic of the metalens unit cell, consisting of a
SizNy nano-pillar on a SiO» substrate. The pillar diameter varies
radially to modulate the optical phase. (b) Diameter distribution
map of the metalens. (c) Top: Optical and SEM images of the
fabricated metalens. Bottom: Optical image of the fully integrated
MetaCamera, demonstrating its ultra-compact size.



1.2. PSF Evaluation

To enable comparative algorithms that rely on point spread
function (PSF) measurements and to validate the agreement
between our fabricated metalens and its simulated design, we
conducted direct PSF evaluations. As illustrated in Fig. 3, we
employed an RGB LED module (CREE-XML-5050 RGBD-
10W), with each color channel featuring a pixel size of ap-
proximately 1 mm. The LED was placed at a distance of 1 m
from the metalens, thereby approximating a point source. We
recorded the PSFs by sequentially activating each color chan-
nel while maintaining a fixed LED position. The measured
PSFs are shown in Fig. 3, from which it can be observed
that our fabricated metalens are consistent with the designed
ones.

2. Data Collection

To obtain paired data, we employed a setup where a cam-
era directly captures a high-definition display. Initially, me-
chanical micro-adjustments were made to align the captured
images with the displayed content roughly. To achieve pre-
cise pixel-level correspondence, an affine transformation was
applied.

At the start of data collection, a high-definition chess-
board pattern was displayed on the monitor. Corner detection
was then used to extract the coordinates of the chessboard
corners from the captured images. Given /N point correspon-
dences {(x;,y;) — («},9})}¥,, where for each i, the pair
(x;,y;) denotes a point in the reference image, and (z}, y;)
is the corresponding point in the captured image, the affine
transformation is modeled as
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The parameters a, b, ¢, d, e, and f are estimated by minimiz-
ing the sum of squared errors:
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This process yields high-quality paired images for training
and testing.
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3. Implementation details

We used the following prompts in our work.

» Negative prompt: oil painting, cartoon, blur, dirty, messy,
low quality, deformation, low resolution, oversmooth.

* Neutral prompt: A well-balanced image with acceptable
sharpness average detail and natural colors presenting
the scene in a simple and straightforward manne.

* Positive prompt: A high-resolution 8K ultra-realistic im-
age with sharp focus vibrant colors and natural lighting.

Our approach relies solely on imaging quality descriptions
in the prompt, avoiding dependence on scene content and
ensuring consistent performance.

We set the rank of LoRA 7 to 32 for the UNet and 16 for
the VAE encoder, which strikes a good balance between
model complexity and super-resolution performance. To
obtain the low-frequency components of high-resolution
images as the training target for the neutral condition, we
employed both bilateral and Gaussian filters. The bilateral
filter was used to preserve edges while smoothing the image,
whereas the Gaussian filter helped in reducing noise and
detail, focusing on capturing the overall structure and color
information.

Regarding the attention network(N4), given the relatively
low dimensions of the the FWHM score (Sf) and NR-IQA
score (5;), we employ an MLP-based structure. Specifically,
we first multiply the two score matrices, flatten the result into
a vector, and pass it through the MLP to generate the output
Q matrix. This Q matrix is then incorporated into different
UNet blocks via LoRA to enhance attention mechanisms.

Regarding the probabilistic selection of different training
paths, the initial phase primarily focuses on degradation
learning, enabling the rapid generation of a large number of
pseudo images. Consequently, during the first 1000 iterations,
the probability of selecting the negative path is set to 1, while
the other paths are not considered.

After 1000 iterations, the probability of the negative path
is gradually reduced. Between 1000 and 1200 iterations,
its probability decreases to 0.7, while the positive path is
introduced with a probability of 0.3. The neutral path is not
included at this stage, as learning from the positive path is
more challenging. Once the model sufficiently learns from
the positive path, it can later adapt more effectively to the
neutral path.

As training progresses, the probability of the negative path
continues to decrease, while the positive path gains more
emphasis. By 2000 iterations, the probability of the negative
path stabilizes at 0.1, while the positive path dominates at
0.9, as the negative path has reached stable performance and
no longer requires intensive learning.

Beyond 10,000 iterations, training on the neutral path is
introduced. At this stage, the probabilities are set to 0.1 for
the negative path, 0.15 for the positive path, and 0.75 for the
neutral path. Since prior training on the positive path has
established a solid foundation, the model can quickly adapt
to the neutral path. After 12,000 iterations, the probabilities
are adjusted to 0.1 (negative path), 0.7 (positive path), and
0.2 (neutral path). This distribution is maintained for the
remainder of the training process until convergence at 15,000
iterations.

In practice, strict adherence to this probability schedule
is not required. Instead, the general training strategy should
be followed: prioritize learning the negative path first, then



Figure 3. (a) System configuration for point spread function (PSF) calibration, utilizing a color LED and a pinhole as the point light source.
(b) Simulated and experimentally measured PSFs for red, green, and blue point light sources at incidence angles of 0°, 10°, 20°, and 30°.
Owing to the circular symmetry of the nano-optics, the resulting PSFs are symmetric, and there is strong agreement between simulation and
measurement. Note that at 30°, the PSFs extend partially beyond the microscope objective’s NA, resulting in incomplete capture. (c) Optical
image of the RGBW LED (XLamp XM-L Color LEDs, Cree LED). (d) The relative spectral power distribution of the LED. We only used
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the red, green, and blue dies for PSF calibration.

focus on the positive path, and finally introduce the neutral 4. More Qualitative results
path. This progressive approach ensures efficient learning
while allowing the model to adapt dynamically throughout

training.

We present additional results on real-world images in Fig. 4
as well as our dataset in Fig. 5. Our method significantly
improves image quality by producing results with accurate

color tones, rich details, and enhanced realism.
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Figure 4. Qualitative comparisons of different methods on real-world images captured by our system.

5. Comparison with Pretrained Models

In this paper, we compared diffusion models trained on our
own dataset rather than utilizing pretrained models trained
on large-scale datasets. This decision was driven by the ob-
servation that pretrained models fail to adequately adapt to

our specific dataset characteristics. In Fig. 6, we demon-
strate the performance of pretrained super-resolution diffu-
sion models, clearly showing that such models are incapable
of addressing chromatic aberrations and generate the results
of significantly lower quality.
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Figure 5. Qualitative comparisons of different methods on our unseen test dataset, zoom in for details.
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Figure 6. Comparison with pretrained diffusion models

6. More Ablation Results 7. More Interactive Results

In Fig. 7, we show more instantly tunable decoding results.
In Fig. 8, we show more degradation learning qualitative Please visit the anonymous link https://dmdiff .
results github.io/.


https://dmdiff.github.io/
https://dmdiff.github.io/
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Figure 8. Degradation learning qualitative results. Our method effectively simulates the imaging effects of metalenses.
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