Detect Anything 3D in the Wild

Supplementary Material

1. DA3D

DA3D is a unified 3D detection dataset, consists of
16 diverse datasets. It builds upon six datasets in
Omni3D—Hypersim [7], ARKitScenes [2], Objectron [1],
SUNRGBD [8], KITTI [5], and nuScenes [4]—while par-
tially incorporating an additional 10 datasets to further en-
hance the scale, diversity, and generalization capabilities of
3D detection models. As shown in Figure 1, DA3D com-
prises 0.4 million frames (2.5x the scale of Omni3D), span-
ning 20 distinct camera configurations.

The dataset is standardized with the similar structure to
Omni3D [3], including monocular RGB images, camera in-
trinsics, 3D bounding boxes, and depth maps. DA3D is de-
signed to test 3D detection models across a wide variety of
environments, camera configurations, and object categories,
offering a more comprehensive evaluation setting.

1.1. Dataset Composition

We categorize the datasets in DA3D based on two aspects:

Indoor vs. Outdoor. As shown in Figure 2 (left), DA3D
expands both indoor and outdoor datasets compared to
Omni3D. Additionally, the ratio of indoor to outdoor data in
DA3D is more balanced than in Omni3D, ensuring a more
representative distribution for models trained across diverse
environments.

Supervision Types. We also analyze DA3D in terms of the

distribution of supervision types (See Figure 2 (right)):

* 35% data provides only depth supervision.

* 239% data provide only 3D bounding box annotations.

* 42% data contains both depth maps and 3D bounding
boxes.

* Intrinsic parameters are available for all data.

1.2. Dataset Splits.

For training and evaluation, we follow the dataset splitting

strategy used in prior works [3]. Specifically:

* We construct the training set by merging training subsets
from the original datasets.

* We form the validation set by sampling from the original
training data, ensuring balanced representation.

e We use the original validation sets of each dataset as
the test set, allowing for direct comparison with previous
benchmarks.

This setup ensures fair evaluation and maintains consis-
tency with existing benchmarks while assessing both in-
domain and zero-shot generalization capabilities.
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Figure 1. The composition of the DA3D dataset.

300000
200000
100000 I I ‘
0 |
Omni3D DA3D = Depth obly ® Depth&3D Box
M Indoor ® Outdoor 3D Box only

Figure 2. The data distribution of the DA3D dataset. (left): the
statistics of indoor and outdoor data. (right): the statistics of data
with different supervision categories.

1.3. Evaluation Setup

DA3D is designed to evaluate zero-shot generalization in
both novel object categories and novel camera configura-
tions. We define two evaluation settings:

Zero-Shot Categories. Following prior work [10], we se-

lect partial categories from KITTI, SUNRGBD, and ARK-

itScenes as unseen classes for zero-shot testing.

Zero-Shot Datasets.

* We use Cityscapes3D, Waymo, and 3RScan as unseen
datasets with novel camera configurations.

* Cityscapes3D & Waymo introduce new intrinsics and im-
age styles, challenging models to generalize across differ-
ent camera setups.

* 3RScan not only introduces novel camera setups, but also
contains unseen object categories, making it useful for
testing both category and camera generalization.
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Figure 3. Detailed implementation of camera and depth module
from UniDepth.

2. Model Details
2.1. Camera and Depth Module Details

This section introduces how the camera module and depth
module work, predicting intrinsic and camera-aware depth,
also related feature.

As show in Figure 3, the fused feature Ffused are in-
put into the camera module, which uses a cross-attention
mechanism and a to obtain the camera intrinsic parameters.
These intrinsic parameters are then used to generate camera
rays. The rays are defined as:

U
(ri,re,13) = K |v
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where K is the calibration matrix, © and v are the pixel
coordinates, and 1 is a vector of ones. In this context, the
homogeneous camera rays (r,7,) are derived from:
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This dense representation of the camera rays undergoes
Laplace Spherical Harmonic Encoding (SHE) [6] to pro-
duce the embeddings C. These embeddings are then passed
to the depth module using the cross-attention mechanism.

The depth feature conditioned on the camera embed-
dings, is computed as:

D|C = MLP(CrossAttn(D, C))

Subsequently, the depth feature is processed through an
upsampling head to predict the final depth map.

2.2. 3D Box Head Details

This section introduces the details of the 3D box head. Af-
ter the query Q passes through the Geometric Transformer
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Figure 4. 3D Box head details.

and Two-Way Transformer, the model outputs O. O con-
tains outputs corresponding to both 3D-related hidden states
O3p and prompt hidden states O,. We extract the 3D-
related output O3, for further processing.

Subsequently, Osp is passed through a series of predic-
tion heads as show in Figure 4.

We then transform these predictions into the final 3D
bounding box parameters and obtain the 3D bounding
box (z,y,z,w, h,l, R, S) for each detected object, where
(z,y, z) denotes the 3D center, (w, h,l) represent the di-
mensions, and (R,.S) describe the rotation and predicted
3D IoU score.

2.3. Loss Details

Depth Loss. The depth module is supervised using the
Scale-Invariant Logarithmic (SILog) loss, defined as:
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where Ad; = log(d™®) —log(d2"), and N is the number
of valid depth pixels.
Camera Intrinsic Loss. The camera error is computed with
the dense camera rays. For an image with height H and
width W, the intrinsic loss is formulated as:
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Detection Loss. The detection loss consists of three com-

ponents:

* Smooth L1 loss for box regression, covering the predic-
tion of center, depth, and dimensions.

» Chamfer loss for rotation matrix prediction, ensuring ac-
curate orientation estimation.



Figure 5. An example on 3RScan. The left image shows the origi-
nal 3RScan annotations, while the right image presents the detec-
tion results from Grounding DINO after feeding in all the 3RScan
labels. Severe naming ambiguities (e.g., “trash can” vs. “rubbish
bin”’) and missing annotations lead to a substantial decrease in the
detector’s performance.

* Mean squared error (MSE) loss for 3D IoU score pre-
diction, which optimizes the confidence estimates of de-
tected objects.

Combining these terms, the total detection loss is:

£del = Lbox + Lrot + £iou7 (3)

3. Target-aware Metrics

In our work, we evaluate both traditional metrics and the

target-aware metrics proposed by OVMono3D [10]. Un-

der the target-aware paradigm, rather than prompting the
model with all possible classes from an entire dataset, we

only prompt it with the classes present in the current im-

age during inference. This is designed to address two key

challenges encountered:

* Missing annotations: Comprehensive 3D annotation is
often impractical or prohibitively expensive, leading to
incomplete ground-truth annotations.

* Naming ambiguity: Datasets may label the same objects
with inconsistent category names or annotation policies,
creating confusion when merging datasets.

As illustrated in Figure 5, these issues are especially pro-
nounced in the 3RScan [9] dataset. The left side shows
the official 3RScan annotations, while the right side shows
detections from Grounding DINO, which are largely mis-
aligned with the dataset’s labeling conventions. Conse-
quently, traditional evaluation metrics may yield mislead-
ing or inconsistent results, whereas target-aware metrics
help mitigate these mismatches by restricting the evaluated
classes to those actually present in the scene.

4. More Ablation Study

4.1. Various Prompts Performance

In this section, we evaluate different types of prompts, in-
cluding box prompts, point prompts, and text prompts, both
with and without intrinsic prompts. The results on Omni3D

Table 1. Various Prompt Performance.

Prompt Type ‘ Box Point Text

w/ Intrinsic Prompt 3438 25.19 2231
w/o Intrinsic Prompt | 32.16 24.0 21.02

Table 2. Ablation on different backbones. The table reports AP3p
scores. We verify the effectiveness of SAM and DINO along two
dimensions: (1) whether or not we use the pretrained SAM pa-
rameters, and (2) whether adopt the pretrained DINO backbone or
ConvNeXt for the depth module.

Backbone ‘ w/ SAM  w/o SAM

DINO 25.80 19.12
ConvNeXt 23.11 18.27

are presented in Table 1. Each prompt type demonstrates its
effectiveness in guiding 3D detection. Besides, on the zero-
shot datasets, we observe that omitting intrinsic prompts
leads to a significant performance drop (even approaching
zero), which further highlights the critical role of intrinsic
prompts for reliable depth calibration in unseen scenarios.

4.2. Ablation on Different Backbones

In this section, we investigate our choice of backbone by
comparing the use of SAM and DINO backbones. For
DINO, we replace it with ConvNeXt and adopt the same
pretraining method proposed by UniDepth. For SAM, we
examine its effect by removing the SAM-pretrained weights
and training from scratch. As shown in Table 2, SAM’s pre-
trained parameters prove crucial for boosting performance.
Meanwhile, compared to ConvNeXt, DINO offers richer
geometric representations, resulting in stronger 3D detec-
tion performance.

4.3. Ablation on DA3D Dataset

We ablate the impact of the DA3D dataset in Tab. 3. The
additional data in DA3D primarily improves generalization
to novel cameras, as Omni3D contains only two distinctive
intrinsics for outdoor scenes.

Table 3. Ablation on training datasets. Unless specified, all mod-
els are trained on the Omni3D dataset. For the in-domain setting,
prompts are provided by Cube R-CNN, while prompts for novel
classes and novel datasets are generated by Grounding DINO.

Method In-domain Novel Class Novel Camera
Apgpn APSH APSS' ‘ APGY APES

CubeR-CNN | 2326 | - | 822/-

OVMono3D ‘ 22.98 ‘ 4717471 4.07/16.78‘ 5.88/10.98  0.37/848

DetAny3D 2433 | 23.75/2375 17.63/20.87 | 831/11.68 0.64/9.56

DetAny3Dpasp | 2492 | 25.73/2573  7.63/21.07 | 11.05/1571 0.65/9.58




4.4. Ablation on Inference Speed

We compare the inference speed of DetAny3D with prior
methods in Table 4. DetAny3D runs at 1.5 FPS on a sin-
gle KITTI image, which is slower than Cube R-CNN (33.3
FPS) and OVMono3D (7.1 FPS). This is a trade-off for
stronger generalization across novel categories and cam-
eras, as DetAny3D is designed as a foundation model rather
than for real-time deployment.

Table 4. Inference speed comparison on KITTIL.

Method Cube R-CNN  OVMono3D DetAny3D
FPS 1 333 7.1 1.5

4.5. Per-category Performance on Novel Classes

As shown in Table 5, we provide a detailed comparison of
per-category AP3p on novel classes from the KITTI, SUN-
RGBD, and ARKitScenes datasets between our DetAny3D
and the baseline OVMono3D. DetAny3D shows consistent
improvements across most categories.

5. Limitations

Text Prompt Process. Our method leverages open-
vocabulary 2D detectors such as Grounding DINO to con-
vert text prompts into 2D box prompts. While effective, this
strategy may cause semantic loss, as textual nuances are not
directly injected into the 3D detection pipeline. Moreover,
2D detectors are known to perform poorly under heavy oc-
clusion or partial visibility, introducing a domain gap when
transferring their outputs to 3D tasks.

Inference Efficiency. Although DetAny3D achieves strong
generalization across novel categories and camera settings,
its inference speed (1.5 FPS) is significantly slower than ex-
isting lightweight 3D detectors. This limits its applicability
in latency-sensitive scenarios such as real-time robotics or
autonomous driving.

Lack of Temporal Modeling. Our current design operates
on single-frame inputs and does not utilize temporal infor-
mation from video sequences. Incorporating motion cues
and enforcing temporal consistency could potentially im-
prove detection accuracy and enable better integration into
downstream video-based tasks, such as video knowledge
distillation and temporal grounding.

6. Licenses and Privacy

All data used in this work are obtained from publicly avail-
able datasets and are subject to their respective licenses.
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