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Supplementary Material

Here, we provide additional information to supplement
the main paper. Firstly, we provide a detailed derivation of
the interpolation-specific variational lower bound in §A.1.
Secondly, we present more details on the network structures
of the Global Matching module, the Local-Global Attention
Weighting module, and the Point Fusion module in §A.2,
§A.3, and §A.4. Then, the additional dataset details infor-
mation is described in §B. We conduct additional ablation
studies in §C. Moreover, we provide additional qualitative
results in §D.

A. Methods Details
A.1. Derivation of the interpolation-specific varia-

tional lower bound
In this section, we derive an interpolation-specific vari-
ational lower bound Lintp, the optimization objective of
DiffPCI. The main paper mentions that DiffPCI consists
of a forward interpolation diffusion process and a reverse
interpolation denoising process. The forward interpolation
diffusion process is defined by a Markov chain that gradu-
ally adds noise to a ground truth intermediate point cloud
frame Pn using a pre-defined noise schedule {βt}Tt=1 in T
steps, with conditional probabilities, as follows:

q(Pn
1:T |Pn) :=

T∏
t=1

q(Pn
t |Pn

t−1), (S.1)

q(Pn
t |Pn

t−1) := N (Pn
t ;
√
1− βtP

n
t−1, βtI). (S.2)

Let αt = 1 − βt and ᾱt =
∏t

i=1 αi, according to the con-
ditional independence property of Markov chain, one can
sample from the forward interpolation diffusion process at
an arbitrary time step t with:

q(Pn
t |Pn) = N (Pn

t ;
√
ᾱtP

n, (1− ᾱt)I). (S.3)

To sample Pn
t from this distribution in practice, we can use

a reparameterization:

Pn
t (P

n, ϵ) =
√
ᾱtP

n +
√
1− ᾱtϵ, ϵ ∼ N (0, I). (S.4)

Here the noise schedule {βt}Tt=1 is the designed such that
ᾱt ≈ 0 and q(Pn

T |Pn) ≈ N (Pn
T ;0, I). That is, as the

forward interpolation diffusion process ends, the last state
of the ground truth point cloud frame becomes close to pure
Gaussian noise.

Given the forward interpolation diffusion process, one
could generate new samples by starting from pure Gaus-
sian noise and sampling from the reverse conditionals
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q(Pn
t−1|Pn

t ), P
0, and P1. As q(Pn

t−1|Pn
t ) is intractable,

so one can use a θ-parameterized Gaussian distribution

pθ(P
n
0:T ) := p(Pn

T )

T∏
t=1

pθ(P
n
t−1|Pn

t ,P
0,P1), (S.5)

pθ(P
n
t−1|Pn

t ,P
0,P1) := N (Pn

t−1;µθ(P
n
t ,P

0,P1, n), β̃tI),
(S.6)

to approximate the reverse Markov chain (provided that βt
is sufficiently small in each forward step [4]). Here µθ de-
notes a deep neural network, and β̃t =

1−ᾱt−1

1−ᾱt
βt . Then the

interpolation-specific variational lower bound is derived as
follows:

E [− log pθ(P
n)]

≤ E
[
− log

(
pθ(P

n
0:T | P0,P1)

q(Pn
1:T | Pn)

)]
=: Lintp, (S.7)

and training can be done by minimizing Lt(θ), it can be
decomposed [1, 3, 5] as

Lintp = Eq

[
DKL(q(P

n
T |Pn)||pθ(Pn

T ))︸ ︷︷ ︸
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+
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The LT in Equ. S.8 can be ignored because the prior
pθ(P

n
T ) can be set to a standard normal distribution. The re-

construction term can be approximated and optimized using
a Monte Carlo estimate [3], leaving the Lt−1 as the main fo-
cus for learning the reverse interpolation denoising process.
The q(Pn

t−1|Pn
t ,P

n) in the Lt−1 is tractable and it can be
derived that

q(Pn
t−1|Pn

t ,P
n) = N (Pn

t−1; µ̃t(P
n
t ,P

n), β̃tI), (S.9)

Here,

µ̃t(P
n
t ,P
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√
ᾱt−1βt
1− ᾱt

Pn +

√
αt(1− ᾱt−1)

1− ᾱt
Pn

t ,

(S.10)
As both q(Pn

t−1|Pn
t ,P

n) and pθ(Pn
t−1|Pn

t ) are Gaussian
distributions, the KL-divergence in the Lt−1 in Equ. S.8



takes the form

Lt−1 = Eq
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It is noted that plugging Equ. S.4 into Equ. S.11, the 1⃝ can
be written as

µ̃(Pn
t ,P
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n
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,

(S.12)
As 2⃝ also conditions on Pn

t , we can match 1⃝ closely by
setting it to the following form:

µθ(P
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αt(1− ᾱt−1)P

n
t
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where fθ(Pn
t ,P

0,P1, n) is parameterized by a deep neural
network that seeks to predict Pn from noisy point cloud Pn

t

and time index t. Then, the optimization problem simplifies
to:

Lintp = loss(fθ(P
n
t ,P

0,P1, n),Pn). (S.14)

where we employ the Chamfer distance as the loss function
(see Sec. 3.3 in the main paper).

A.2. Global Matching module
This module is introduced from our baseline GMSF [7] for
calculating global correlation and estimating initial scene
flow. First, the global cross-correspondence matrix between
the input frames P0,P1 is given by multiplying the feature
matrices F0,F1 and then normalizing over the second di-
mension with softmax to get the matching confidence. Sec-
ondly, the self-correspondence matrix of P0 is generated
using a self-attention mechanism. The estimated matching
point cloud is computed as a weighted average of the 3D
coordinates based on the matching confidence. Third, the
initial scene flow is obtained by subtracting the estimated
matching point cloud from P0.

A.3. Local-Global Attention Weighting module
The local-global attention weighting module applies both
local and global attention weighting to the secondary en-
coded features of the full-scale module, enhancing the
learning of more prominent and engaging features.

As shown in Fig. S1 (a), local information is initially
integrated into a compact region using k-nearest neighbors
(k-NN) and subsequently derived through aggregation, as
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Figure S1. The illustration of Local-global attention weighting
module. (a) Local attention weighting (Orange dashed box); (b)
Global attention weighting (Blue dashed box). The inputs are two
contiguous frames P0,P1 and their features F0,F1 encoded once
by the full-scale module respectively. Attention features F̂0, F̂1

are output after attention weighting module. Here Ⓢ,⊕,⊗ and
⊖ denote the softmax function, multiplication, addition element-
wise, and subtraction element-wise operations, respectively.

follows:

F̃0 =MLP (ψq(F2
0)− ψk(F2

0) + δ)⊙ (ψv(F2
0) + δ),

F̃1 =MLP (ψq(F2
1)− ψk(F2

1) + δ)⊙ (ψv(F2
1) + δ),

(S.15)

The input features are initially processed through linear lay-
ers ψq , ψk, and ψv to produce the query, key, and value rep-
resentations. F2 is the feature obtained from the secondary
encoding of the full-scale encoder. The symbol δ denotes
the relative position embedding.

Global information is gathered through two Global at-
tention weighting layers (Fig. S1 (b)): one utilizing self-
attention and the other employing cross-attention, both of
which have similar structures. The self-attention is formu-
lated as

F01
self =

〈
ϕq(F

01
cat), ϕk(F

01
cat)

〉
ϕv(F

01
cat), (S.16)

The cross-attention is given as

F̂0 = TC[
〈
ϕq(F

01
self ), ϕk(F

01
self )

〉
ϕv(F

01
self )]. (S.17)

Here we take generating F̂0 as an example, where ϕq, ϕk,
and ϕv are the linear layers to generate query, key, and
value. F01

cat is the cascading in the batch dimension of F̃0

and F̃1. TC is a tensor chunking operation.

A.4. Point fusion module
See Fig. S2 for details.
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Figure S2. The illustration of Point Fusion module. The cen-
ter frame and remedial frame obtained from the adaptive selec-
tion module are processed by the point fusion module, which uti-
lizes k-nearest neighbors (k-NN), a multi-layer perceptron (MLP),
max pooling, and softmax operations to produce the final predicted
time n point cloud frame P̂n

pred.

B. Additional dataset details

As described in Sec. 4.1 of the main paper, we adhere to
the dataset segmentation and preprocessing methods out-
lined in NeuralPCI [8]. Specifically, the KITTI odometry
dataset comprises 22 LiDAR point cloud sequences, with
11 sequences containing ground truth (00 to 10). We use
sequences 00 to 06 for training and sequences 09 to 10 for
testing. The Argoverse 2 sensor dataset includes 1,000 sce-
narios, averaging 150 LiDAR sweeps per scenario, whereas
the Nuscenes dataset consists of 1,000 driving scenes, each
containing approximately 400 LiDAR frames. For both
datasets, we utilize the top 700 scenes for training and the
scenes numbered 851 to 1000 for testing. The KITTI odom-
etry and Argoverse 2 sensor data are point cloud frames cap-
tured at a frame rate of 10Hz, while the Nuscenes data are
captured at 20Hz. To ensure consistency across datasets, the
Nuscenes data are downsampled to a frequency of 10Hz,
which inherently leads to increased motion between the in-
put frames.

C. Additional Ablation Studies

C.1. Number of Time Steps.

We investigate the influence of the different numbers of
time steps during training and sampling on the results of the
Nuscenes dataset in Table. S1 and S2. Although increasing
the number of denoising steps can produce cleaner inter-
mediate frames, we observe that in real-world autonomous

driving PCI tasks, the GT frames themselves often contain
noise. As a result, over-denoising (with too many denois-
ing steps) may yield overly clean outputs that deviate from
the noisy GT, leading to degraded scores. By contrast, the
slightly noisy frames generated with fewer denoising steps
(as in our method) better align with the GT and achieve
higher scores.

Table S1. The number of time steps during training on three
automatic driving datasets. The best results are in bold.

Dataset The number of steps Metrics
CD↓ EMD↓

Nuscenes

5 1.17 182.83
20 0.84 165.04

100 0.99 172.61
200 1.15 186.67

Argoverse 2 sensor

5 0.81 61.47
20 0.67 56.79

100 0.73 62.08
200 0.86 68.43

KITTI odometry

5 0.58 58.24
20 0.50 53.67

100 0.55 58.51
200 0.59 60.35

Table S2. The number of time steps during inferencing on
three automatic driving datasets, where the training time step
is set to 20. The best results are in bold.

Dataset The number of steps Metrics
CD↓ EMD↓

Nuscenes

1 0.85 165.96
2 0.84 165.72
3 0.84 165.04
4 0.86 165.97
5 0.86 165.98
6 0.86 166.01
7 0.86 166.04

Argoverse 2 sensor

1 0.67 57.06
2 0.67 56.98
3 0.67 56.79
4 0.68 57.16
5 0.68 57.22
6 0.69 57.25
7 0.70 57.34

KITTI odometry

1 0.50 53.99
2 0.50 53.70
3 0.50 53.67
4 0.50 53.67
5 0.50 53.94
6 0.50 53.99
7 0.50 54.00



Table S3. Runtime and Parameter Comparison.

Methods Parameter(M) Runtime(ms) CD↓ / EMD↓

PointINet [2] 0.002 1458 1.55/190.54

NeuralPCI [8] 1.848 60822 1.15/179.11

FastPCI [6] 5.793 109 1.11/173.64

DiffPCI(ours) 4.124 2815 0.84/165.04

C.2. Runtime and Parameter Comparison.
We report runtime (ms per frame) during inference on a
single NVIDIA GeForce RTX 3090 GPU, the Number of
parameters (M), and the quantitative comparison of the
Nuscenes dataset in Table. S3. It is evident that while we
incur a certain inference time cost for a relatively modest
number of parameters, the interpolation performance gains
we achieve are significantly superior.

D. Additional Visual Results
Fig. S3, S4, and S5 show more of our qualitative results.
Among them, yellow, blue, and red correspond to three in-
terpolated intermediate frames.
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Figure S3. More qualitative comparison on Nuscenes dataset.
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Figure S4. More qualitative comparison on Argoverse 2 sensor dataset.
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Figure S5. More qualitative comparison on KITTI odometry dataset.
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