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Supplementary Material

In this supplementary material (Appendix as referred to
in the main paper), we provide additional evaluation of our
proposed approach, including
• Appendix A: Evaluation on Model-specific Training
• Appendix B: Evaluation on Complex Bimanual Hand-

object Manipulation Dataset
• Appendix C: Additional Qualitative Evaluation

A. Evaluation on Model-specific Training

Method
Rec. Error Phys. Plausibility

MJE P-MJE ACCL KIN STA

HaMer [44] 18.9 4.4 7.95 22.49 1.08

VIBE [29] 17.0 6.4 - - -
TCMR [12] 16.0 6.3 - - -
Deformer [16] 13.6 5.2 - - -
BioPR [12] 12.9 - - - -

Ours (A) 17.5 4.1 1.01 0.00 0.00
Ours (S) 12.4 3.9 0.80 0.00 0.00

Table 4. Quantitative Comparison of Our Model-Specific Ap-
proach against SOTA Methods. The evaluation is conducted on
the DexYCB dataset. Results of other methods are obtained from
their published papers. “Ours (A)” refers to our model-agnostic
approach discussed in the main manuscript, while “Ours (S)” rep-
resents our model-specific variant trained to enhance HaMer. For
all the values, the smaller, the better.

In the main paper, we focused on a challenging model-
agnostic setting where access to specific frame-wise recon-
struction models is not assumed. Here, we explore the
potential of our approach through model-specific training,
where we adapt our refinement model to enhance a specific
frame-wise reconstruction method. Taking the leading ap-
proach HaMer as our baseline, we train our model on paired
sequences (x1:T ,y1:T ) consisting of HaMer’s frame-wise
predictions and ground truth motion data. Table 4 shows
the evaluation results on the DexYCB dataset. Our model-
specific variant (Ours (S)) achieves substantial improve-
ments over HaMer in both reconstruction accuracy (reduc-
ing MJE from 18.9 to 12.6 mm) and physical plausibility
(reducing ACCL from 7.95 to 0.8 mm/frame2). Moreover,
our model-specific variant significantly outperforms recent
video-based methods in 3D hand reconstruction accuracy.
Specifically, compared to leading method BioPR, our ap-
proach achieves better accuracy with an MJE of 12.4 mm

versus their 12.9 mm. These improvements further demon-
strate the effectiveness of our physics-augmented diffusion-
based refinement approach. While our model-agnostic ap-
proach provides flexibility across different reconstruction
methods, the model-specific training can achieve superior
performance when targeting a specific frame-wise recon-
struction model.

B. Evaluation on Complex Bimanual Hand-
object Manipulation Dataset

Method P-MJE ACCL

A:HaMer [44] 9.7 9.88

A+PoseBERT [4] 11.0 3.58

A+Ours 8.9 0.81

Table 5. Quantitative Evaluation on Complex Bimanual Hand-
object Manipulation Dataset TACO [38]. For all the values, the
smaller, the better.

We here extend the evaluation to a recent dataset fea-
turing more complex hand-object interaction sequences
to further demonstrate the effectiveness of our approach.
Specifically, we consider the TACO dataset, a large-scale
benchmark for bimanual hand-object interactions. Captured
through a multi-view setup, it encompasses a diverse range
of tool-action-object compositions representative of daily
human activities. Without any model fine-tuning or retrain-
ing, we integrate our method on top of HaMer and evaluate
it on the S1 testing split of the TACO dataset. We present
the evaluation results in Table 5. As illustrated, our ap-
proach consistently improves upon the leading frame-wise
reconstruction HaMer (8.9 vs. 9.7 mm P-MJE, and 0.81
vs. 9.88 mm/frame2 ACCL) and outperforms the leading
motion refinement model PoseBERT (11.0 mm P-MJE, and
3.58 mm/frame2 ACCL). These improvements in signifi-
cant dynamic scenarios involving complex bimanual hand-
object manipulation further validate the robustness of our
physics-augmented diffusion-based approach.

C. Additional Qualitative Evaluation
Our qualitative evaluation in the main paper demonstrates
improved accuracy and physical plausibility in hand mo-
tion recovery compared to SOTA approaches. In this sec-
tion, we further highlight our advantages through evalua-
tion on stable grasping sequences. We present a qualitative



Figure 6. Qualitative Evaluation on Stable Grasping Se-
quences. The testing sequences are from DexYCB (left) and
HO3Dv2 (right). To better illustrate the enhanced reconstruction
of our model on grasping poses, root rotation is removed in the
results on the right.

comparison with HaMer in Figure 6. Despite being trained
on large-scale data with a high-capacity model, HaMer still
produces degraded reconstructions even for simple, static
hand poses when partially observed—such as when hold-
ing a bottle (highlighted by red rectangles). In contrast, our
model achieves temporally consistent motion recovery by
capturing an intuitive understanding of how the hand nat-
urally interacts with objects. In particular, the example on
the right shows that our method maintains stable hand poses
over time during prolonged grasping.


