
Disentangled Clothed Avatar Generation with Layered Representation

Supplementary Material

This is the supplementary material for Disentangled
Clothed Avatar Generation via Layered Representation. A
video (Sec 1) is included summarizing our method and ex-
hibiting more visualization results. We introduce the imple-
mentation details of our method in Sec 2. Additional ex-
perimental results and limitation discussions are provided
in Sec 3.

1. Supplementary Video
We provide a supplementary video for quick understanding
of our method. The video includes:
• A brief introduction of our method;
• Results of unconditional generation and decomposition;
• Results of novel pose animation;
• Results of component transfer.

2. Implementation Details
2.1. Network Architecture
Layered UV Feature Plane and Shared Decoders. The
size of layered UV feature plane is 12 × 128 × 384, where
we concatenate the three-layer Gaussian-based UV feature
plane width-wise instead of channel-wise following [14].
Two shared decoders Dg and Dt are utilized to decode the
UV feature plane to attribute maps, where attribute (posi-
tion µ, opacity α, rotation r, scale s, color c) of 3D Gaus-
sians [5] can be extracted via bilinear interpolation. Dg

predict geometry-related attributes (position and opacity)
while Dt outputs texture-related attributes (color, rotation
and scale). The architecture of these two shared decoders
is shown in Fig. A. Dg and Dt both are shallow decoder
with two layers. For the first layer, we apply SiLU [2] as
the activation function, while for the last layer, Sigmoid is
utilized except for the offset ∆µ prediction layer. No activa-
tion function is utilized for the offset prediction layer. Both
the offset prediction layer and covariance prediction layer
(predict ∆r and ∆s) are initialized with weight conform to
U(−1× 10−5,+1× 10−1). Biases are initialized to be 0.
Denoising UNet. Following [12], the denoising UNet [13]
has UNet architecture with attention modules. The network
architecture is shown in Tab. A.

2.2. Training Details
The whole training framework is built upon Pytorch. We
utilize Adam [7] as the optimizer. For shared decoder and
denoising UNet, the learning rate is 1× 10−4 and 1× 10−4

separately. The learning rate for UV feature plane is 0.04.
All the UV feature planes are first normalized through a
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Figure A. Network Architecture of Shared Decoder. The number
above the arrow represents the input and output channels of each
block. Each block consists of one 2D convolutional layer, one
batchnorm layer, and one activation function. The number on the
block is the kernel size of the convolutional layer. We utilize SiLU
as the activation function and for the last layer, sigmoid is used as
the activation function except for the ∆µ output.
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Figure B. Structure of Single Layer representations. We design
two kinds of single-layer representations for ablation study.

Table A. Model Configuration of denoising UNet.

Key Value

Number of timesteps 1000
Noise configuration Linear
Input size 128× 384× 12
Base channel 128
Channels configuration [0.5, 1, 2, 2, 4, 4]
Resblocks per downsample 2
dropout 0
Number of attention heads 4
Attention resolution [16, 8, 4]

Tanh function and then sent into the shared decoder. The
total batch size is 4 scenes per GPU. During one itera-
tion, we select 2 views of each scene for supervision. The
whole training process takes 6 days on two RTX 3090
GPUs. The loss weight for each fitting loss is as follows:
λcolor = 18, λmask = 9, λper = 0.05, λseg = 9, λmaskin = 5,



λskin = 0.5, λoffset = 5, and λsmooth = 0.5. For ablation
study, we propose single-layer representations with a size of
128× 128× 12, the whole architecture is shown in Fig. B.
Other parameters are the same as layered UV feature plane.

2.3. Data Preprocessing
For Tightcap [1], we convert the estimated SMPL [10] pa-
rameters to SMPLX [11] to fit our template. Masks for each
component (top, bottom, shoes) are provided by the dataset.
Since the dataset does not separate hair from body, we com-
bine hair and body components during training. For THu-
man2.0, THuman2.1 [15] and CustomHuman [3], we first
optimize the SMPL-X parameters to make them underneath
the clothing layer. We then obtain the segmentation maps
for each view through Sapiens [6] estimation and merge the
original 20 segmentation labels into 5 (hair, body, top, bot-
tom, and shoes).

3. Limitations and Discussions
3.1. Limitations
(1) Due to the segmentation-map-based supervision and
SMPLX-based templates, the performance of our method is
affected by the accuracy of the estimated segmentation map
and SMPLX parameters. Eliminating inaccurate segmen-
tation results as in [4] and optimizing SMPLX parameters
during training can help mitigate the impact.
(2) The collision between body and clothing is a long-
existing problem when representing the human body and
clothing separately. Introducing post-processing to opti-
mize the position of 3G Gaussians on clothing and body
via collision-avoiding loss might eliminate this problem.
(3) Animation of loose clothing is prone to artifacts. Using
video data instead of multi-view images or introducing pre-
trained networks for cloth deformation might help.
(4) While our method effectively disentangles core com-
ponents, a promising direction for future research is to ex-
tend it to handle general accessories (e.g., glasses, bags) by
incorporating additional template layers or adopting other
representations.
(5) Animation of loose clothing is prone to artifacts. Us-
ing video data instead of multi-view images or introducing
pre-trained networks for cloth deformation might help. In-
troducing physical constraints by converting current repre-
sentation to meshes [8] or combining UV feature plane with
sewing pattern similar to GarmageNet [9] would be interest-
ing future work.

3.2. Additional Experiments
Shape Adaptation. Benefiting from the SMPL-X-based
template of our representation, we can adapt clothing to
various body shapes as shown in Fig. C which facilitates
seamless transfer of components among subjects.

Figure C. Clothing Adaptation to Body Shape

Sensitivity on noisy semantic masks. Our method is ro-
bust to noisy masks thanks to multi-view supervision, which
can correct errors present in individual views. During train-
ing, we filter out samples with obvious noise in over three
consistent views. As shown in Fig. D, our method can han-
dle noise that does not persist across multiple views.

Noise in Multi-view Noise in Single-view

Figure D. Robustness to noisy semantic masks.

Extension to multi-layer outfits. As shown in Fig. E, our
method can composite multi-layer clothes to enable more
composition.Ground Truth Res(128)+Decoder(2) Res(256)+Decoder(2)
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Reconstruction
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Figure E. Multi-layer garment composition.

More Generation Results. By training on the composi-
tion of three datasets (THuman2.0, THuman2.1, and Cus-
tomHuman), our method is capable of generating more di-
verse avatars and challenging clothing which demonstrates
the promise of our methods to achieve better results on
larger datasets, as illustrated in Fig. F and Fig. G.

Wo TV

Figure F. More diverse generation results.

Generalization capability. As shown in Fig H, our method
can generalize to various clothing types (dress) and poses
(hitting) exhibiting distinctive fingers, facial details, and
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Figure G. Dress and skirt generation results.

disentanglement capability. We believe that better results
can be obtained when extending to a larger training set.
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Figure H. Single image reconstruction on unseen 4DDress dataset.

Ablation on TVLoss. Shown in Fig. F, without TVLoss,
the inner body color will be affected by outer components.

Ground Truth Res(128)+Decoder(2) Res(256)+Decoder(2)

PSNR:38.08 PSNR:38.55 PSNR:37.34

Res(128)+Decoder(3)

Reconstruction

Multi-Layer Garment Dress & Skirt Generation

Figure I. Ablation on feature map resolution and decoder depth.

Ablation on UV feature plane resolution and decoder
depth. We conduct a simple experiment to explore the in-
fluence of UV feature plane resolution and decoder depth
on the results. We reconstruct digital avatars utilizing multi-
view images with different resolutions and decoder depths.
Demonstrated by Fig. I, the increase of feature map res-
olution can enhance the final results by a small margin.
Increasing decoder depth, however, hinders optimization
and reduces results. We consider imbalanced data distri-
bution(over 90% plain texture clothing) and occlusion from
limited poses might be the primary constraint of the gener-
ation quality for our method. Incorporating video and syn-
thetic data might be helpful to construct a more powerful
model.
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