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1. Experiment protocol

1.1. Dataset setup

SemanticKITTI [1] dataset is a large-scale benchmark for
3D semantic segmentation in autonomous driving, extend-

ing the KITTI Odometry dataset with dense semantic an-
notations for over 43,000 LiDAR scans. It provides labels
for 25 classes, such as “car,” “road,” and “building,” cap-
turing diverse urban and rural scenes. The SemanticKITTI
dataset consists of 22 sequences, where sequences 00-10
are densely annotated for each scan, enabling tasks such
as semantic segmentation and semantic scene completion
using sequential scans. Sequences 11-21 serve as the test
set, showcasing diverse and challenging traffic situations
and environment types to evaluate model performance in
real-world autonomous driving scenarios. SemanticKITTI
is widely used in research and serves as a critical resource
for advancing LiDAR-based perception systems.
KITTI-360 [12] dataset is a comprehensive benchmark
for 3D scene understanding in autonomous driving, cap-
turing 360-degree panoramic imagery and 3D point clouds
across diverse urban environments. It includes over 73 km
of driving data with dense semantic annotations for both
2D (images) and 3D (point clouds), covering categories
like “vehicles,” “buildings,” and ‘“vegetation.” KITTI-360
provides high-resolution sensor data, including LiDAR,
GPS/IMU, and stereo camera recordings, making it ideal
for tasks such as 3D semantic segmentation, panoptic seg-
mentation, and mapping in real-world driving scenarios.

1.2. Evaluation metrics

Chamfer Distance (CD) [2] is a metric used to measure
the similarity between two sets of points, often employed
for evaluating the quality of generated point clouds or ge-
ometric shapes. For two point sets P and (), the Chamfer
Distance is defined as:
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The first term calculates the average squared distance from
each point in P to its nearest neighbour in ). The sec-
ond term calculates the average squared distance from each
point in () to its nearest neighbour in P. Chamfer Distance
evaluates how well two point sets approximate each other
by considering their nearest neighbour distances in both
directions. CD effectively captures local geometric fea-
tures and exhibits strong robustness in local shape match-



ing, which is commonly used in evaluating the matching
and reconstruction of 3D point clouds.

Jensen-Shannon Divergence (JSD) [14] is a symmetric
measure of similarity between two probability distributions.
It is a variation of the Kullback-Leibler (KL) divergence and
is widely used in information theory, statistics, and machine
learning. Given two probability distributions P and () over
the same domain, JSD is defined as:

JSD(PIQ) = S KL(PIM) + SKL@IM) @)

Here M = (P + Q) is the average distribution, and
KL(P||M) is the Kullback-Leibler divergence.

JSD measures how much P and () diverge from their
average distribution M. It is symmetric (JSD(P||Q) =
JSD(Q||P)) and always produces a finite value in the
range [0, 1] when using base-2 logarithms. Unlike KL di-
vergence, JSD avoids issues with undefined values when
probabilities are zero in one of the distributions. JSD is an
efficient metric to evaluate the similarity between two dis-
tributions. The calculation of JSD in this paper is followed
by Xiong et al. [25].

1.3. Implementation details

We choose the pre-trained LiDiff [16] model as the teacher
model €g, the student model G4, and the auxiliary dif-
fusion model €4 shares the same network architecture as
the teacher model and are initialized by the teacher model.
The ScoreLiDAR is trained on SemanticKITTI dataset. The
pre-trained diffusion model is provided by the official re-
lease of LiDiff [16]. For fair comparison, we follow LiD-
iff [16]’s training strategy. ScoreLiDAR is trained on se-
quences 00-07 and 09-10 of SemanticKITTI (does not
train on KITTI-360), and evaluated on sequence 08 of Se-
manticKITTI and sequence 00 of KITTI-360.

For optimization, we use the Stochastic Gradient De-
scent (SGD) optimizer with the default parameters. The
learning rate is set to 3e — 5 and the batch size is set to 1.
The training ratio between the student model and the auxil-
iary diffusion model is maintained at 1 : 1. To reduce com-
putational costs, when calculating the point-wise loss, we
first randomly select 1—10 of the points from the ground truth
scene. Then, following the proposed method, we select the
top % points with the highest curvature from these points
as the key points to calculate the distance matrix. That is,
the final number of key points is % of the total number
of points in the ground truth scene. When calculating the
K -nearest neighbours, we set K = 180. The weights of
scene-wise 1088 Agcene and the point-wise loss Apgin: are
set to 0.5 and 0.01, respectively. ScoreLiDAR requires
only 50 iterations to achieve convergence, taking approxi-
mately 10 minutes on a single A40 GPU, which is highly

efficient. Our model and code are publicly available on
https://github.com/happywlnd/ScoreLiDAR.

2. Discussion

2.1. The effectiveness of the distillation on improv-
ing the completion efficiency

In this part, we provide a detailed discussion about the effi-
ciency of the proposed distillation method.

Why is it reasonable to initialize the student model
and auxiliary diffusion model using the teacher model?
Firstly, such an initialization method is commonly used in
existing methods [13, 22, 26-28]. Secondly, the pre-trained
teacher model €y contains the information about the training
distribution, initializing the student model with the teacher
model to perform distillation is essentially a fine-tuning pro-
cess for the teacher model, which can accelerate the effi-
ciency of the distillation. Third, although the student model
has the same parameters and the network structure as the
teacher model, its sampling distribution is different from
that of the teacher model due to the different sampling steps.
The teacher model €4 (LiDiff [16] in this case) conducts the
multi-step sampling.
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The teacher model €y from LiDiff [16] conducts 50-steps
sampling by repeating Eq. (3). The student model Gy,
conducts the single-step sampling. After G, predicts the
noise, a single-step denoising in Eq. (4) is performed to di-
rectly obtain the completed scene G°.
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Thus, the single-step sampling scene of the student model is
different from the multi-step sampling scene of the teacher
model.

g, P, t)) “)

Why is the distillation loss effective? Why does the stu-
dent model get optimized? Firstly, our distillation loss
is different from the standard loss of the diffusion models
such as DDPM [4]. The loss of DDPM is to directly pre-
dict the noise added to the training sample. Differently,
in proposed ScoreLiDAR, the distillation loss utilizes the
noise predicted by the student model G ¢, to perform a one-
step sampling, resulting in a completed scene G different
from the multi-step sampling of the teacher model. The
completed scene G° is then perturbed noise on a random
timestep ¢ to obtain the noisy scene Gt, and the difference
between two score functions according to G* is calculated
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to serve as the gradient for optimizing the student model, as
shown in Eq. (5)

Lxr~Ep.[|lea (G, P, ) —es (G, P, 1) 3] (5

Secondly, although the auxiliary diffusion model €4 is
initilized from the teacher model ey, the gradient in Eq. (5)
is non-zero and efficient. Recall that the auxiliary diffusion
modeley and the student model G4, are trained alternately.
The auxiliary diffusion model €, is first trained on G to fit
the one-step sampling distribution, which is different from
the pre-trained distribution of the teacher model. Although
the auxiliary diffusion model €4 is also initilized from the
teacher model, its parameter will be updated and become
different from the teacher model’s after one optimization.
Then, when G 44, is optimized using the gradient in Eq. (5),
the output of € (G*, P, t) is naturally different from the out-
put of €, (G*, P, t) due to the optimization of €. Thus, as
mentioned in Sec. 4.1 of the main paper, the non-zero gradi-
ent in Eq. (5) will optimize the distribution of G ¢, moving
towards the pre-trained distribution of the teacher model.
Then, €4 and G, are optimized in turn to convergence.

Why is one-step sampling used during training, while
few-step sampling is used during inference? Firstly,
in traditional diffusion models like DDPM [4] and
DDIM [19], they directly predict the whole noise added
in the diffusion process during the training, whereas a
multi-step sampling process is performed during sampling.
Meanwhile, different sampling methods allow for sampling
with different numbers of steps. Intuitively, this indicates
that although the training objective remains the same, the
sampling can be performed with different numbers of steps.
A more profound explanation is from solving the stochastic
differential equation as in the diffusion model. Moreover,
Consistency Model [22] also has a similar setting; its
student model performs one-step generation during training
but conducts multi-step generation during sampling. We
adopted a similar principle as in the Consistency Model.
The one-step sampling in our training is to increase the fi-
delity of the resulting sample given different noisy samples,
while in inference multi-step sampling would gradually re-
fine the final result. Therefore, although the student model
performs one-step sampling during training, the quality
of scene completion can be improved by increasing the
number of sampling steps during the inference. More visu-
ally, the one-step generation procedure of the Consistency
Model is “noise—image”, and the multi-step generation
procedure is ‘“noise—noisy image—---—image”’. In
this paper, the one-step sampling of student model G,
during training is “noise—predicted noise—completed
scene” and the few-step sampling during inference
is “noise—predicted noise—noisy scene—predicted
noise—noisy scene—predicted noise—--- —completed

scene”. In summary, it is reasonable to use one-step
sampling during training and multi-step sampling during
inference.

2.2. The differents of scene-wise loss and Chamfer
Distance

The scene-wise loss has the following form

1
Escene = W OZ 1;1618 Hp? 7pH2 (6)
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The scene-wise loss is part of the Chamfer Distance. The
reason for using only part of the Chamfer Distance (CD)
is that the optimization objective of scene-wise loss is to
ensure that the points in the generated scene G° are as close
as possible to the corresponding points in the ground truth.
The unused term in CD matches each point in ground truth
with its nearest point in generated scene G°, which may lead
to points in G° being pushed toward the average position
of non-existent matching points in the ground truth. This
effect is detrimental to scene completion.

2.3. Discussion on the significance of this study

Firstly, we discuss the significance of this study. For au-
tonomous vehicles, accurately recognizing and perceiving
their surrounding environment during operation is criti-
cal [10, 11]. This is particularly important for identifying
objects that may affect the vehicle’s movement, such as
other vehicles, pedestrians, traffic cones, and signposts [6].
The accurate and efficient recognition of these objects is
essential for the safe operation of autonomous vehicles.
However, the scan data obtained by onboard LiDAR is
sparse [9, 23], and it is difficult to identify key objects such
as vehicles from the magnified regions of the sparse scan.
Autonomous vehicles cannot obtain sufficient information
about the driving environment from these sparse LiDAR
scans [7, 17]. Therefore, it is necessary to use appropriate
methods to complete the sparse LiDAR scans.

LiDiff [16] uses DDPM [4] models to complete 3D Li-
DAR scenes, achieving impressive results. However, due to
the inherent characteristics of diffusion models, LiDiff [16]
requires approximately 30 seconds to complete a single
scene, limiting its applicability in autonomous vehicles. In
contrast, the proposed ScoreLiDAR can complete a scene
in almost 5 seconds, more than 5 times faster than LiD-
iff [16], while achieving higher completion quality. Thus,
with the scenes completed by the proposed ScoreLiDAR,
autonomous vehicles can more easily recognize critical ob-
jects in their driving environment, enabling safer and more
effective navigation.

3. Additional completed scenes

Fig. 2 and Fig. 3 show additional completed scenes by the
proposed ScoreLiDAR and compare them with the scenes



SemanticKITTI KITTI360
Ccby, JSD) EMD] CDJ) JSD] EMD|

ScoreLiDAR 0.342  0.399 2326 0452 0437 23.02
w/o Point-wise loss ~ 0.351 0.414 23.37 0485 0.486 23.29
w/o Scene-wise loss  0.367  0.422 24.89 0477 0451 24.69
w/o Structural Loss ~ 0.419  0.430 2413 0.549 0.445 24.56

Model

Table 1. Ablation study of the scene-wise and point-wise loss. The
metrics refer to the performance with refinement. Colors denote
the | 1st, 2nd , and 3rd best-performing model.

SemanticKITTI KITTI360
Ch] JSD| EMD] CDJ] JSD| EMD]

Ascene = 0.5, Apoint = 0.01 | 0.342  0.399 2326 0452 0437 23.02
Ascene = 0.05, Apoint = 0.01  0.354  0.409 2340 0494 0457 2321
Ascene = 0.5, Apoint = 0.1 0.358 0419 2327 0.539 0474 23.09

ScoreLiDAR

Table 2. Ablation study of the different weights of the scene-wise
and point-wise loss. The first row refers to the default configu-
ration of the ScoreLiDAR. The metrics refer to the performance
with refinement.

Model SemanticKITTI ~ KITTI360
CD| JSD| CDJ] JSDJ
LiDiff (Refined) [ 0.375 0416 0517 0446

w/ Structural loss  0.399  0.426 0.535 0.450

Table 3. Ablation study of training LiDiff [16] with structural loss.

completed by LiDiff [16].

4. Additional experiment results

4.1. More ablation study of structural loss

To further validate the effectiveness of the structural loss,
we evaluated the performance of variants trained with only
point-wise loss or scene-wise loss and compared them with
default ScoreLiDAR. As shown in Tab. 1, compared to the
default ScoreLiDAR, the performance of variants trained
with only scene-wise loss or point-wise loss decreased.
However, compared to the variants without structural loss,
the variants using only one type of loss still showed im-
proved completion performance. These results confirm the
effectiveness of the structural loss in the distillation process.

Additionally, we investigated the impact of different
weights of scene-wise and point-wise loss on the comple-
tion quality. The results are shown in Tab. 2. It can be ob-
served that reducing Ascene OF increasing Apoin: leads to a
decline in the performance of ScoreLiDAR but still achieves
a comparable performance. This verifies the effectiveness
of the proposed structural loss in improving the completion
performance of the student model.

Finally, we trained LiDiff using structural loss to inves-
tigate whether structural loss can enhance the performance
of LiDiff. The results are shown in Tab. 3. Training LiD-

SemanticKITTI KITTI360
CD] JSD] EMD] CDJ| JSD] EMDJ

n=1/20 0329 0392 2435 0528 0475 24.01
n=1/30 0342 0399 2326 0452 0437 23.02
n=1/60 0.346  0.409 25.19 0452 0471 25.05
n=1/70 0.428 0.454 25.60 0.466 0479 25.44

ScoreLiDAR

Table 4. Ablation study of different key points number. The result
of n = 1/30 refers to the default configuration of the ScoreLi-
DAR. The metrics refer to the performance with refinement.

Model CD| JSD| EMD/

Random selection 0.384 0.433 23.23
farthest selection  0.442  0.459 23.63
ScoreLiDAR 0.342 0.399 23.26

Table 5. Comparison of different selection methods on Se-
manticKITTI dataset. The performance of the proposed selection
method is better than others.

iff [16] with structural loss does not result in a performance
improvement. This may be because structural loss is not
suitable for direct addition to the training loss of LiDiff [ 16],
i.e. the traditional diffusion model training loss.

4.2. Ablation study of different key point number

As mentioned in Sec. 1.3, the optimal number of the key
point is set to the 3—10 of the total number of points in the
ground truth. To investigate the impact of different num-
bers of key points on the completion performance of Score-
LiDAR, we decreased the number of key points for model
training and evaluated the completion performance. As
shown in Tab. 4, the final performance of ScoreLiDAR is
positively correlated with the number of key points. When
the number of key points decreases, the performance of
ScoreLiDAR declines. This is because an insufficient num-
ber of key points causes the point-wise loss to fail in effec-
tively capturing the relative positional information between
key points, preventing the student model from learning the
local geometric structure, and thereby reducing the comple-
tion quality. However, when the number of key points is too
large, it can easily cause an out-of-memory issue and reduce
training efficiency. Therefore, this paper sets n = %.

4.3. Ablation study of different key point selection

method

We compare different key point selection methods including
random selection and farthest selection with the proposed
selection method based on curvature. The results in Tab. 5
show that using the proposed selection method based on
curvature achieves the optimal performance than other se-
lection methods.



Model CDJ| JSD] EMD/] Time(s)l

LiDiff (50 steps) [16] 0.564  0.549 21.98 29.18
LiDiff (50 steps Refined) [16] 0.517 = 0.446 22.96 29.43
LiDiff (8 steps) [16] 0.619 0471 24.85 5.46
LiDiff (8 steps Refined) [16] 0.550 0.462 25.49 5.77
ScoreLiDAR (8 Steps) 0.452 0437 23.02 5.14
ScoreLiDAR (4 Steps) 0.482 0.461 23.76 3.16
ScoreLiDAR (2 Steps) 0.525 0457 - 1.69
ScoreLiDAR (1 Steps) 0.750 0.478 - 1.03

Table 6. Ablation study of different sampling steps on the KITTI-
360 dataset. The metrics of ScoreLiDAR refer to the performance
with refinement.

Model User preference 1
LiDiff [16] 35%
ScoreLiDAR 65%

Table 7. Results of user study. Our ScoreLiDAR outperforms the
existing SOTA model.

4.4. Ablation study of different sampling steps on
KITTI-360

We also conduct the ablation study of different sampling
steps on the KITTI-360 dataset. The results are shown
in Tab. 6. Similar to the results on the SemanticKITTI
dataset, as the number of sampling steps decreases, the time
required for ScoreLiDAR to complete a scene is reduced.
Although the completion performance declines slightly, it
remains comparable to that of existing SOTA models.

4.5. User study

The user study is conducted to verify the completion perfor-
mance of ScoreLiDAR further. We first used ScoreLiDAR
and the current SOTA method LiDiff [16] to complete the
same 30 input LiDAR scans, resulting in 30 pairs of com-
pleted scenes. We then randomly recruited seven volunteers
and guided each to evaluate the detail and fidelity of these
30 pairs of scene images, selecting the one they believed to
be closer to the ground truth. The seven volunteers included
five men and two women, aged 24-30, with five participants
having research backgrounds related to autonomous driving
or LiDAR scene completion and the remaining two partic-
ipants having backgrounds related to artificial intelligence.
They were given unlimited time for the evaluation, but the
average completion time for all volunteers was 30 minutes.
The result of the user study is shown in Tab. 7. Compared
to LiDiff, ScoreLiDAR received a 65% user preference, sur-
passing the majority threshold. This indicates that, in the
eyes of most users, the detail and fidelity of the scenes com-
pleted by ScoreLiDAR more closely resemble the ground
truth. The results of the user study further demonstrate the
effectiveness of ScoreLiDAR in LiDAR scene completion.

SemanticKITTI (IoU) % 1

Model 05m 02m __ 0.1m

LMSCNet [18] 3223 23.05 3.48
LODE [9] 4356 47.88 6.06
MID [23] 45.02  41.01 16.98
PVD [29] 2120  7.96 1.44
LiDiff [16] 4249 33.12 11.02
LiDiff (Refined) [16] 4071 38.92 24.75
ScoreLiDAR 3843 2575 8.34
ScoreLiDAR (Refined) 37.33 29.57 15.63

Table 8. The IoU evaluation results on the SemanticKITTI dataset.

KITTI-360 (IoU) % +

Model 05m 02m 0.Im
LMSCNet [18] 2546 1635 299
LODE [9] 42.08 [42.63 585
MID [23] 4411 3638 15.84
LiDiff [16] 4222 3225 10.80
LiDiff (Refined) [16]  40.82 36.08 [21.34
ScoreLiDAR 36.82 25.49 9.70

ScoreLiDAR (Refined) 33.29 28.60 15.95

Table 9. The IoU evaluation results on the KITTI-360 dataset.

4.6. Visualization of key points

To validate the feasibility of our proposed key point se-
lection method, we visualized the selected key points in
the ground truth scene. As shown in Fig. 1, the red key
points are mostly distributed on walls, traffic cones, cars,
and corners, while smooth areas such as the road surface
have no key points. These key points are crucial for express-
ing the details of 3D LiDAR scenes. Selecting these points
to compute the point-wise loss allows the student model to
more easily capture the relative configuration information
between key points, thereby better completing key objects
in the scene.

4.7. Experiments on semantic scene completion

The objective of this paper is to propose a foundational
method for distillation acceleration applicable to various Li-
DAR scene completion diffusion models. Semantic scene
completion is not within the scope of the fundamental ex-
periments considered in this paper. In spite of this, to val-
idate the generalizability of the proposed method, we use
SemCity [8] as the teacher model to verify the effectiveness
of ScoreLiDAR on semantic scene completion tasks. Be-
cause the pre-trained models and code for the metric com-
putation of SemCity are not publicly available, we retrained
SemCity based on the official implementation and repro-



Figure 1. The visualization of the selected key points. Red points refer to the key points selected by the proposed method.

Model FID| KID|

SemCity [8]  88.52 0.11
ScoreLiDAR  81.76 0.09

Table 10. Results of semantic scene completion. Our ScoreLiDAR
shows better performance.

duced the metric computation ourselves. Tab. 10 shows the
results. In semantic scene completion tasks, the proposed
ScoreLiDAR still shows better completion quality than that
of the teacher model.

4.8. Experiments on scene occupancy

We calculate the Intersection-Over-Union (IoU) [20] to
evaluate the occupancy of the completed scene compared
with the ground truth scene. IoU represents the degree
of overlap between the voxels in the completed scene and
those in the ground truth scene. A higher IoU value indi-
cates a higher completeness of the completed scene. Dur-
ing the evaluation, we considered three different voxel res-
olutions: 0.5m, 0.2m, and 0.1m. The smaller the voxel

resolution, the more fine-grained details are considered in
the evaluation metrics, and vice versa. However, IoU is a
voxel-based metric, and in some voxel-based LiDAR scene
completion methods, it can serve as an accurate measure
of completion quality. In contrast, ScoreLiDAR is a point
cloud-based completion method, which differs from tradi-
tional voxel-based approaches. As a result, [oU may intro-
duce bias when evaluating the completion quality. There-
fore, here we provide IoU results solely as a relative refer-
ence.

Tab. 8 and Tab. 9 show the IoU of ScoreLiDAR and
existing models. Under low voxel resolutions, ScoreLi-
DAR achieves comparable IoU values, meaning ScoreLi-
DAR generates dense and accurate point clouds. When the
voxel resolutions become higher, the performance of Score-
LiDAR declines. As mentioned above, the existing method
is mainly based on signed distance fields, which implement
the scene completion using a voxel representation. ScoreLi-
DAR is point-level scene completion with the input of point
clouds obtained from LiDAR scans, which works better at
smaller voxel resolutions.



5. Theoretical demonstration

The gradient of the student model is Eq. (7).

Vo Dk (pg (9°) lg* (GY))

ogt (1)
By [Vorlogpl (67) — Vi logq' (6%)] 2

an

As proposed in ScoreSDE [21], the log likelihood
Vgt log g (G?) can be approximated by the predicted noise
¢ with Vg:logq' (GY) =~ —\/;ﬁ. Thus, the gradient
in Eq. (7) can be written as

VD, (o (69 4" (69)
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Here v/1 — @' can be ignored. Thus, the gradient of G,
can be approximated by
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6. Introduction on utilized methods

6.1. Variational score distillation

Variational Score Distillation (VSD), proposed by Prolific-
Dreamer [24], is designed to leverage a pre-trained diffu-
sion model to train a NeRF [15], enabling the rendering of
high-quality 3D objects.

Given a text prompt y, the probabilistic distribution of
all possible 3D representations can be modeled as a proba-
bilistic density 1(0||y) by a NeRF model parameterized by
6. Let g}y (zo||c, y) as the distribution of the rendered image
ao of NeRF given the camera ¢, and po(xo|ly) as the dis-
tribution of the pre-trained text-to-image diffusion model
att = 0. To generate high-quality 3D objects, Prolific-
Dreamer [24] optimizes the distribution of x by minimizing
the following KL divergence

min Dxr (¢ (%o | 9) [po (o | ) (10)

However, directly solving this variational inference
problem is challenging because pg is complex, and its
high-density regions may be extremely sparse in high-
dimensional spaces. Therefore, ProlificDreamer reformu-
lates it as an optimization problem at different time steps ¢,

referring to these problems as Variational Score Distillation
(VSD),

minEe.c [(0¢/ae) () Dk (a1 (¢ | ¢,9) [Ipe (@0 | 9))]
(1)
Theorem 1 in [24] proves that introducing the additional
t does not affect the global optimum of Eq. (10). Theorem

2 in [24] provides the method for optimizing the problem
in Eq. (11).

do-
- —Ete.c[w(t) (=01 Va, logps (2 | y)
score of noisy real images
(12)
dg (0,,c
(o, log gt (| e.9))) 220y

score of noisy rendered images

Here the score of noisy real images is approximated by the
pre-trained diffusion model €,,ctrqin (4, t, y) and the score
of noisy rendered images is approximated by another diffu-
sion model €4(x;,t, ¢, y), which is trained on the rendered
images with the standard diffusion objective.

n ] 2
3 Buve |[eo (o0 (0:) #oue o) ]
m(;n; te, { €y | tg c)+ o€t ey € )

(13)

In practice, €,(x¢,t,c,y) is parameterized by a small

UNet or the Low-rank adaptation (LoRA) [5] of the

teacher model. With the alternating training of NeRF and

€y(x¢,t,c,y), ProlificDreamer [24] is ultimately able to
generate high-quality 3D objects.

6.2. MinkowskiEngine

Sparse tensor computation plays a critical role in fields such

as 3D point cloud processing, computer vision, and physical

simulations. Unlike dense tensors, sparse tensors contain a

high proportion of zero values and directly applying tradi-

tional tensor operations can lead to inefficient use of com-
putational resources. Minkowski Engine [3] addresses these
challenges by providing a high-performance framework tai-
lored for sparse tensor computation, enabling efficient op-
erations on high-dimensional sparse data. In this paper, we
used the Minkowski Engine to process sparse point cloud
data.

Minkowski Engine introduces several innovative ap-
proaches to sparse tensor processing.

» Efficient Sparse Tensor Representation. Sparse tensors
are represented using coordinate-value pairs, eliminating
the need to store zeros. This representation reduces both
memory usage and computational overhead.

» Sparse Convolution Operations The framework supports
high-dimensional sparse convolutions, with kernels de-
signed to adapt to varying sparsity patterns. Optimized
memory access patterns and parallel computation strate-
gies ensure high efficiency.



» Fast Coordinate Mapping Minkowski Engine employs
hash tables for rapid coordinate mapping, which accel-
erates tensor indexing and sparse pattern matching.

e Automatic Differentiation Support The framework in-
cludes built-in support for automatic differentiation, fa-
cilitating the training of machine learning models based
on sparse tensors.

e Multi-Dimensional Capability Minkowski Engine can
handle sparse tensors of arbitrary dimensions, making it
suitable for a wide range of applications, from 2D image
processing to 5D simulations.

Minkowski Engine has been widely adopted in various do-
mains including 3D point cloud processing, physical sim-
ulations and medical imaging. By significantly improving
computational efficiency and scalability, the Minkowski En-
gine has become a preferred choice for handling sparse ten-
sor computations in both research and industrial applica-
tions.

7. Ethical statement

The potential ethical impact of our work is about fairness.
As “human” is included as a kind of object in the LIDAR
scene, when performing scene completion, it may be nec-
essary to complete human figures. Human-related objects
may have data bias related to fairness issues, such as the
bias to gender or skin colour. Such bias can be captured by
the student model in the training.

7.1. Notification to human subjects

In our user study, we present the notification to subjects
to inform the collection and use of data before the exper-
iments.

Dear volunteers, we would like to thank you for
supporting our study. We propose ScoreLiDAR, a
novel distillation method tailored for 3D LiDAR
scene completion, which introduces a structural
loss to help the student model capture the geomet-
ric structure information. All information about
your participation in the study will appear in the
study record. All information will be processed
and stored according to the local law and policy
on privacy. Your name will not appear in the fi-
nal report. Only an individual number assigned to
you is mentioned when referring to the data you
provided.

We respect your decision whether you want to be
a volunteer for the study. If you decide to par-
ticipate in the study, you can sign this informed
consent form.

The Institutional Review Board approved the use of
users’ data of the main authors’ affiliation.

8. Failure examples

Fig. 4 presents some failure cases of ScoreLiDAR. From
these examples, it can be observed that ScoreLiDAR ex-
hibits over-completion to some extent, where regions that
do not exist are completed. Before the completion, as men-
tioned in Sec.3 in the main paper, the number of points
of the input sparse scan P is increased by concatenating
its points K times and the dense input P* is obtained. If
the number of points of P* exceeds the actual number of
points in the ground truth, it can lead to redundant points in
the completed scene. These redundant points may be dis-
tributed in areas that do not require completion, resulting in
the situations observed in the failure cases.
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Figure 2. Completed samples of ScoreLiDAR from KITTI-360 dataset.
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Figure 3. Completed samples of ScoreLiDAR from SemanticKITTI dataset.
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Figure 4. Failure examples of ScoreLiDAR.
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