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Supplementary Material

I. Expanded Experimental Comparisons

I.1. Detailed Comparisons
This section presents additional results to further illustrate
the superiority of our method in reconstructing smooth and
detailed 3D surfaces. Figure S1 provides zoomed-in com-
parisons across four examples (A, B, C, D), showcasing
our method’s consistent outperformance of SSR and GT in
terms of cleaner surfaces, reduced artefacts, and better han-
dling of occluded or damaged regions.

In Examples A and C, our method demonstrates strong
geometric inference capabilities. In Example A, the cab-
inet reconstructed by our method exhibits smoother sur-
faces compared to SSR [36] and GT, which both suffer from
noticeable noise unrelated to the input image. Moreover,
in the occluded region where the sofa partially covers the
cabinet, our method infers a more accurate geometry than
SSR, successfully reconstructing the hidden surface. Simi-
larly, in Example C, where SSR and GT results display vis-
ible damage and holes in the chair seat, our method recon-
structs a complete, undamaged surface. This indicates that
our model effectively learns harmonious geometry, even in
challenging cases with incomplete input.

In Examples B and D, our method excels in captur-
ing subtle surface details. For instance, in Example B,
the reconstructed sofa armrest produced by our method is
smoother and more rounded compared to SSR. Likewise, in
Example D, the office chair cushion reconstructed by our
method achieves a noticeably smoother and more realistic
surface, enhancing the overall visual quality. These results
highlight our model’s ability to recover both global consis-
tency and fine-grained surface details effectively.

The superior performance of our method can be at-
tributed to two critical components. First, the depth-driven
features provide robust geometric guidance, particularly in
occluded or incomplete regions. Second, the Selective
State-Space Model (SSM) [7] dynamically prioritizes fea-
ture alignment and fusion, balancing geometric stability and
enhanced surface quality. Together, these innovations en-
able our method to produce smoother reconstructions and
handle complex scenarios more effectively than existing ap-
proaches.

I.2. Normal Visualization Across Angles
Figure S2 presents a comparative analysis of 3D reconstruc-
tion results produced by our method alongside state-of-the-
art (SOTA) approaches, including XTC [42], Omnidata [8],

and ground truth (GT). The visualizations encompass input
images, depth maps, and normal maps for various objects.
The XTC [42], Omnidata [8], and GT data are sourced di-
rectly from [36], ensuring consistent and fair comparisons.
XTC [42] emphasizes cross-modal feature learning, while
Omnidata [8] utilizes pre-trained depth priors for single-
image 3D reconstruction. These methods serve as base-
lines to evaluate our model’s performance across diverse
and challenging scenarios.

Our method exhibits several notable advantages. While
baseline methods like XTC [42] and Omnidata [8] excel at
enhancing local surface details, particularly in regions with
sharp textures (e.g., the wrinkles on the bed in the first row),
they often amplify noise and exhibit geometric inconsis-
tencies in occluded or incomplete areas. In contrast, our
method prioritizes global structure, resulting in smoother
transitions and fewer noise artefacts across all examples.
This balance between global consistency and local refine-
ment underscores our model’s robustness in handling com-
plex scenes.

Although specific fine details, such as subtle wrinkles,
may appear less pronounced in our reconstructions than
XTC or Omnidata, the significant noise reduction and im-
proved structural consistency make our method well-suited
for real-world applications where smoothness and accuracy
are paramount.

I.3. Robustness Under Occlusion and Multi-Angle
Visualization

Figure S3 highlights the robustness of our method in han-
dling occlusions and generating normal maps across a wide
range of viewing angles, from −90◦ to 90◦. The exam-
ples span diverse object categories, including chairs, tables,
sofas, and beds, with input images often exhibiting par-
tial occlusions or noisy elements. Despite these challenges,
our method consistently produces high-quality and coherent
normal maps, demonstrating adaptability to complex scenes
and diverse object types.

Our method accurately reconstructs the complete geom-
etry in the second row, where the table is partially occluded,
preserving its flat surfaces and clean edges. Similarly, in the
sixth row, the cabinet example illustrates our model’s capac-
ity to infer missing details caused by occlusions, such as oc-
cluded side panels, while maintaining global structural con-
sistency. In the eighth row, the sofa reconstruction show-
cases our model’s ability to achieve seamless transitions and
realistic surface details even under severe occlusion.



Figure S1. Zoomed-in comparisons of reconstructed model details. From left to right: Input images, results from our method (Ours), SSR,
and GT. Examples include (A) a cabinet partially occluded by a sofa, (B) a sofa armrest, (C) a chair with a damaged seat, and (D) an office
chair cushion.

Figure S2. Comparative analysis of reconstruction results, in-
cluding depth and normal maps, for various objects. Results for
XTC [42], Omnidata [8], and GT are sourced from [36], while
ours represents the proposed method.

These results underscore the robustness of our method
in challenging scenarios. Moreover, the ability to generate

consistent normal maps across multiple viewpoints high-
lights its suitability for applications requiring multi-angle
analysis and high-fidelity 3D reconstructions.

II. Point Sampling
This supplementary material provides additional details on
our point sampling strategy. In our framework, robust point
sampling is achieved through an adaptive approach using
the BoxBound. This module refines the sampling of points
along rays by iteratively adjusting the sampling distribu-
tion based on error bounds computed from Signed Distance
Function (SDF) evaluations. The refined samples are then
used in the reconstruction inference pipeline to generate
high-fidelity 3D surfaces.

II.1. Adaptive Point Sampling with BoxBoundSam-
pler

The BoxBoundSampler begins with uniform sampling
along each camera ray, then iteratively refines the sample
set by:
1. Initialization:

• Use a InitSampler to generate initial z-values (z vals)
along each ray between near and far clipping planes.

• Compute initial error bounds based on the differences
between consecutive samples.

2. Iterative Refinement:
• For each iteration, compute 3D sample points along

the rays using the current z vals.
• Evaluate the SDF at these sample points via the im-

plicit network.
• Calculate each interval’s error bound d∗ using geomet-

ric relations (e.g., via Heron’s formula) and derive a
local error estimate.

• Update the beta parameter through a binary (line)
search to satisfy the error threshold.

• Upsample additional points by inverting the cumula-



Figure S3. Multi-angle visualization of reconstructed normal maps from −90◦ to 90◦. Rows showcase results for various objects, including
chairs, tables, sofas, and beds. Despite significant occlusions and noisy inputs, our method produces consistent, high-quality reconstructions
across all angles.



tive distribution function (CDF) computed from the
estimated weights (derived from density and free en-
ergy).

• Merge and sort the new samples with the existing
z vals.

3. Finalization:
• Optionally, extra samples from near and far boundaries

are added.
• The final set of z-values is returned, along with a ran-

domly selected sample for eikonal loss computation.
The Algorithm S1 summarizes the key steps of the

BoxBoundSampler.

II.2. Reconstruction Inference Pipeline
During reconstruction inference, the system performs the
following steps:
• Data Preparation: Load test images, depth maps, and

camera parameters (intrinsics, extrinsics, and pose).
• Point Sampling: Use the BoxBoundSampler (as detailed

above) to generate refined ray samples.
• Volume Rendering: Integrate the sampled points into a

volume rendering framework that leverages the SDF pre-
dictions to compute surface probabilities.

• Mesh Extraction: Apply a surface sliding algorithm to
extract 3D meshes from the rendered volume. Both color
and noncolor meshes can be exported for evaluation.

III. Scene Composition and Visualization

Reconstructing and composing complex 3D scenes remains
a significant challenge in single-image 3D reconstruction.
By leveraging datasets that provide detailed 3D bounding
box annotations and camera pose information, our frame-
work computes the world coordinates for individual objects
and seamlessly integrates them into coherent scene repre-
sentations. This enables the assembly of more miniature
object reconstructions into more significant, unified scenes,
paving the way for tackling even more challenging environ-
ments.

To simulate multi-view observations, our pipeline ro-
tates the camera pose about the y-axis by preset angles
(-90°, -45°, 0°, 45°, and 90°) using the rotation utility
(rend util.rot camera pose). For each rotation angle, the
inference process splits the input image into manageable
pixel blocks, processes them through the network, and
then merges the outputs. This produces high-quality ren-
derings—including RGB images, depth maps, and normal
maps—that capture fine details and global structure.

Figures S4, S5, and S6 summarize our scene composi-
tion results:
• Figure S4: Reconstructed scenes based on depth maps,

highlighting geometric precision and spatial relation-
ships.

Algorithm S1 Adaptive Point Sampling with BoxBound-
Sampler

Require: Ray directions R ∈ RNr×3, camera position
C ∈ R3, initial uniform depth samples z vals ∈
RNz , near/far plane bounds (near, far), pretrained
SDF model SDF Model, maximum iterations T , con-
vergence threshold ϵ

Ensure: Refined depth samples z vals, randomly selected
samples for Eikonal regularization z sample eik

1: iter ← 0, converged← false
2: Initialize variance parameter β from initial z vals
3: while ¬converged ∧ iter < T do
4: P ← C + z vals ·R {Sample points along rays}
5: sdf ← SDF Model(P ) {Evaluate SDF at sampled

points}
6: for i = 1 to |z vals| − 1 do
7: dists[i] ← z vals[i + 1] − z vals[i] {Compute

inter-sample distances}
8: end for
9: d∗ ← ComputeBoxBound(dists, sdf) {Estimate

optimal distance bound}
10: β ← BinarySearchBeta(d∗, ϵ) {Optimize β via bi-

nary search}
11: density ← ComputeDensity(sdf, β) {Compute

sampling density}
12: weights ← ComputeWeights(density, dists)

{Convert density to sampling weights}
13: z new ← InverseCDF(weights) {Sample new

depths via inverse transform sampling}
14: z vals ← SORT(z vals ∪ z new) {Merge and sort

depth samples}
15: converged ← CheckConvergence(β, ϵ) {Evaluate

convergence criteria}
16: iter ← iter + 1
17: end while
18: if Extra sampling is enabled then
19: z vals ← MergeExtraSamples(z vals, near, far)

{Refine boundary sampling (optional)}
20: end if
21: z sample eik ← RANDOM CHOICE(z vals)
{Random sampling for Eikonal loss}

22: return z vals, z sample eik

• Figure S5: Scenes rendered with normal maps, empha-
sizing surface orientations and structural coherence.

• Figure S6: Fully rendered scenes that integrate geometry
and texture for visually realistic results.
Each figure provides visualizations from -90° to 90°, of-

fering a comprehensive 180° view of the scene. These re-
sults demonstrate the robustness of our approach in gener-
ating unified 3D representations that maintain high fidelity
in geometry and texture, even in multi-object environments.



Figure S4. Scene composition visualized using depth information. Reconstructed scenes are shown with −90◦ to 90◦ views, emphasizing
geometric accuracy and spatial relationships.



Figure S5. Scene composition visualized using normal maps. The visualization highlights surface orientations and structural coherence
across the reconstructed scenes.



Figure S6. Fully rendered scene compositions integrating both geometry and texture. The results showcase visually realistic reconstructions
with high fidelity in texture and geometry.
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