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Abstract

Due to the lack of space in the main paper, we provide more
details of the motivation, proposed methods, and experi-
ment results in the supplementary material. Sec. 1 elab-
orates on the motivation behind our E-SAM, while Sec. 2
provides detailed insights into the design of our training-
free framework. Sec. 3 presents extensive comparisons of
visual results between our E-SAM and prior SOTA methods,
along with further discussions.

1. More Details of Motivation
Motivation of Optimizing SAM for Entity Segmentation
task. In this section, we provide a more detailed expla-
nation of our motivation behind this work. Inspired by
[17, 18], Entity Segmentation (ES) is an advanced computer
vision task focused on segmenting all perceptually distinct
entities in an image, without relying on predefined class la-
bels. Unlike traditional segmentation tasks that require a
fixed taxonomy of categories, ES aims to partition an im-
age into its meaningful components, treating each distinct
object, part, or even background entity as a separate seg-
ment. This makes ES particularly suitable for open-world
scenarios where predefined categories are impractical or un-
available. The task inherently aligns with the human vi-
sual system, which intuitively segments a scene into enti-
ties based on perceptual cues such as shape, color, and spa-
tial context. This perceptual alignment has garnered sig-
nificant attention, as it enables a more flexible and detailed
understanding of visual data, which can be applied to vari-
ous real-world applications. Compared to existing methods
specifically designed for the ES task, we find that training
these models demands substantial annotated data and con-
siderable computational resources, posing a significant bar-
rier for researchers with limited resources. For instance, the
ES benchmark dataset, EntitySeg [17], contains numerous
high-resolution images, which increases both the complex-
ity and computational demands of the training process.

Segment Anything Model (SAM) [11] is a powerful
foundational model designed to address a wide range of seg-
mentation tasks. It employs a novel architecture that inte-

grates efficient mask prediction with an interactive prompt-
ing system, allowing SAM to achieve remarkable flexibility
in segmenting different types of regions with minimal user
guidance. SAM’s unique zero-shot capability makes it suit-
able for generalization across various segmentation scenar-
ios without the need for task-specific fine-tuning. Its versa-
tility has led to successful applications in multiple segmen-
tation domains, including instance segmentation [10, 22],
semantic segmentation [13, 24], and panoptic segmenta-
tion [16, 21] tasks. However, despite its broad applicabil-
ity, SAM has not yet been explored for Entity Segmentation
(ES) tasks. In this work, we are the first to explore and
effectively adapt SAM to improve its performance specifi-
cally for ES.

Notably, SAM’s Automatic Mask Generation (AMG)
mode is designed to autonomously generate segmentation
masks for different instances within an image. It works
by using uniformly sampled point prompts across the en-
tire image to predict multiple masks, each representing a
different segment or object within the image. AMG’s goal
is to ”segment everything” by efficiently covering all dis-
tinguishable objects, regardless of their semantic class or
characteristics, making it suitable for a wide range of seg-
mentation tasks without relying on explicit annotations or
training data. Ideally, both SAM’s AMG and ES tasks share
a common objective: to distinguish and delineate all percep-
tually separate entities present in an image. Therefore, We
propose to follow the design mechanism of SAM’s AMG.
in a training-free manner, without modifying any internal
parameters of SAM itself. Our objective is to refine SAM’s
multi-granularity masks generated from uniformly sampled
points into entity-level masks, thereby effectively mitigat-
ing the over-segmentation and under-segmentation issues
without requiring additional training or fine-tuning.

Motivation of Using Superpixels. In this section, we pro-
vide further explanation of why we utilize superpixels in
our approach. Intuitively, as shown in Fig. 1, SAM’s AMG
mode uses a naive NMS method, which results in some ar-
eas having excessive overlapping masks while others are
left without adequate mask coverage. This demonstrates the
over-segmentation and under-segmentation issues we men-
tioned in the main paper regarding SAM’s AMG. In con-
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Figure 1. Visual Comparison of Superpixel Methods: SLIC [1],
Felzenszwalb [6], and AMG’s result

trast, superpixels ensure that every pixel in the image is
clustered into a segment based on its color, texture, or ap-
pearance. By leveraging superpixels, our E-SAM can ef-
fectively address overlapping masks while also recogniz-
ing the clustering relationships within under-segmented ar-
eas, leading to more comprehensive entity segmentation. It
can be observed that superpixels are employed in the de-
sign of all three modules: Multi-level Mask Generation
(MMG), Entity-level Mask Refinement (EMR), and Under-
Segmentation Refinement (USR). This highlights our ef-
fective and extensive usage of superpixels, leveraging their
capabilities across the entire framework to enhance seg-
mentation performance. While using lightweight clustering
or segmentation networks could potentially yield faster or
higher-quality clustering results and help E-SAM achieve
better segmentation, it would inevitably reduce the novelty
of our approach by showing reliance on external clustering
outputs. To avoid this, we chose to employ the most com-
monly used superpixel clustering methods in our approach,
focusing instead on the effectiveness of the design of our
three modules.

For the superpixel generation, our E-SAM considers
two of the most common methods: SLIC [1] and Felzen-
szwalb [6]. Fig. 1 illustrates the differences in the visual
results of the two methods, where yellow lines indicate su-
perpixel boundaries and red/blue points represent the cen-
troids of each superpixel. Intuitively, SLIC generates uni-
formly sized and distributed superpixels, often causing mul-
tiple objects to be contained within a single superpixel. In
contrast, Felzenszwalb adapts to object density, creating
smaller superpixels in densely populated areas and larger
ones in sparse regions. Given our emphasis on superpixel
density, E-SAM incorporates Felzenszwalb to produce su-
perpixels that better align with the distribution of entities in
the image.

Algorithm 1: Overlap Mask Fusion

Input: Object-level masks M̂32
O after MMG. M64

O

and M64
B from mask gallery G.

1 Extract overlap mask pairs in M̂32
O .

2 while Overlap pairs exist do
3 Initiate an array v to record whether a mask of

M̂32
O is visited.

4 for Each overlap mask pair M32
p ,M32

q do
5 if v[M32

p ] or v[M32
q ] then

6 continue

7 ORq
p = M32

p ∩M32
q

8 Uq
p = M32

p ∪M32
q

9 if ORq
p occupies less than τl of larger mask

in M32
p ,M32

q then
10 Cut ORq

p from the larger mask and
merge it into a smaller one.

11 v[M32
p ], v[M32

q ] = True, True

12 continue

13 Initiate a boolean variable m False.
14 if ORq

p occupies larger than τs of smaller
mask in M32

p ,M32
q then

15 if Corresponding prompt of M̂64
B lying

in ORq
p exists then

16 M64
B,p,q is the mask of those prompts.

Filter M64
B,p,q by IoU larger than φ

with Uq
p to obtain F 64

B,p,q.
17 m = True
18 if F 64

B,p,q is not empty then
19 Use Uq

p as the merge result of
M32

p ,M32
q to update M̂32

O .
20 v[M32

p ], v[M32
q ] = True, True

21 else
22 Use the area proportion of

M64
B,p,q in ORq

p M
32
p and M32

q

to vote for the belonging of
ORq

p.
23 Update M̂32

O .
24 v[M32

p ], v[M32
q ] = True, True

25 if not m then
26 Cut ORq

p from the mask with smaller
pred iou of SAM and merge it into
the other one.
v[M32

p ], v[M32
q ] = True, True

27 Extract overlap mask pairs in M̂32
O .



2. More Details of Methodology
Due to space limitations in the main paper, we provide ad-
ditional explanations of the novel design within the E-SAM
framework using accompanying pseudocode. Sec. 2.1 pro-
vides further details about EMR, while Sec. 2.2 elaborates
on the design aspects of USR.

2.1. More detailed in EMR module
In this section, we describe our EMR process in detail,
which aims to enhance the object-level masks generated
by the MMG module into accurate entity-level masks. The
EMR process consists of several key steps, each contribut-
ing to the overall refinement and improvement of segmen-
tation quality. Below, we provide a detailed breakdown of
the EMR framework.
Mask Overlap Extraction The EMR process begins by
extracting overlapping mask pairs from the object-level
masks, denoted as M̂32

O , which are obtained after applying
MMG. Specifically, as shown in Alg. 1, we identify all the
mask pairs that have overlapping regions, which are stored
and analyzed in subsequent steps. These overlap pairs are
crucial for understanding the extent of redundancy in mask
coverage and serve as the foundation for refinement. Once
the overlapping mask pairs (M̂32

p , M̂32
q ) are identified, we

evaluate the overlapping region ORq
p. If the area of overlap

is relatively small, below a threshold τ1 in comparison to the
larger mask, the overlapping section is simply cut, and the
smaller mask is merged into the larger one. If the overlap-
ping area is significant, we then consider prompts from the
mask gallery, G, to determine if further adjustments are re-
quired. The EMR module leverages additional mask infor-
mation from a mask gallery generated by 64-point per-side
sampling, denoted as P 64. The mask gallery includes both
object-level masks M64

O and best-level masks M64
B , which

provide additional guidance for refining overlaps. Based on
these prompts, overlapping masks M̂32

p and M̂32
q are filtered

using an Intersection over Union (IoU) criterion to obtain
a subset of masks, F 64

B,p,q, that are suitable candidates for
merging. The mask with the highest confidence score is se-
lected as the merge candidate, leading to a refined and more
coherent mask representation.
Adjacent Mask Fusion. Next, we construct a similarity
matrix, SC , to evaluate the relationship between superpixel
centroids within the mask map MS . This matrix helps
to determine which masks are adjacent and whether they
should be merged based on similarity. Using the top-k most
similar centroids for each mask, we establish the adjacent
mask similarity matrix, SM , which helps to identify which
adjacent masks share similar features. This similarity-
based merging effectively reduces redundancy and refines
the entity-level representation. As shown in Alg. 2, once
the similarity evaluations and merging operations are com-
pleted, the refined masks M̂32

O are updated to remove over-

Algorithm 2: Adajacent Mask Fusion

Input: Object-level masks M̂32
O after MMG. M64

B

from mask gallery G. Superpixel centroids
C. Image feature F from SAM encoder.

1 Use normalized feature cosine similarity to
construct centroid similarity mask SC .

2 Initiate a boolean variable m True.
3 while m do
4 m = False
5 Initiate a Boolean array V as False to record

whether a mask of M̂32
O is visited.

6 Initiate an all-minus-one square matrix SM with
the side length the same as the number of
masks in M̂32

O .
7 for Each mask pair M̂i, M̂j in M̂32

O do
8 Ci is the set of all superpixels in mask M̂i.

Cj is the set of all superpixels in mask M̂j .
SM (M̂ci , M̂cj ) =
1

|Ci|
∑

ci∈Ci
|{cj | cj ∈ Cj ∧ cj ∈ Topk(SC(ci, ·))}|

9 Choose top-k similar mates for each mask and
update SM .

10 for Each mask pair M̂i, M̂j in SM do
11 if V [M̂i] or V [M̂j ] then
12 continue

13 U j
i = M̂i ∪ M̂j

14 if U j
i is a part of any mask in M̂32

O then
15 Update M̂i and M̂j by U j

i .
16 V [M̂i], V [M̂j ] = True, True
17 m = True

lap and ensure consistency. The process iterates until all
overlapping masks are processed and no further overlaps
exist. The output of the EMR module is an entity-level map
ME , which provides refined and high-quality segmentation
suitable for entity segmentation tasks.

2.2. More detailed in USR module

The USR module (as shown in Alg. 3) addresses the under-
segmentation issues in SAM’s AMG-generated outputs, en-
suring comprehensive coverage of all distinct entities. Be-
low, we provide an overview of the USR framework: The
USR process starts by identifying areas not covered in
the entity-level map ME , which is generated by EMR.
These regions are represented as NME

, indicating parts of
the image that require additional segmentation masks. To
address under-segmented areas, USR generates additional
point prompts based on superpixel information. Specifi-
cally, for each superpixel M i

S that is not covered by ME , the



centroid is computed. If any part of the superpixel is cov-
ered by part-level or subpart-level masks (M32

P or M32
SP ),

the centroid of the corresponding mask is used as the ad-
ditional prompt. Otherwise, the centroid of the superpixel
itself is used as the prompt. These prompts are compiled
into an array PA and used to generate additional masks,
denoted as Mk

A, through SAM’s prompt encoder and de-
coder. Once the additional masks Mk

A are generated, the
USR module evaluates them against the current entity-level
map ME . For each mask Mk

A, an Intersection-over-Union
(IoU) score is computed with ME . If the IoU exceeds a
specified threshold ρ, the mask is merged with the entity-
level map ME . If the IoU is below ρ, the mask is retained as
an independent entity-level mask. This evaluation ensures
that only relevant masks are incorporated to refine segmen-
tation, minimizing redundancy. To avoid generating an ex-
cessive number of overlapping part-level masks, a greedy
algorithm is employed. The goal is to use a minimal number
of masks from Mk

A to fill in the under-segmented regions
of ME , optimizing segmentation quality and maintaining
efficiency. This refinement strategy allows USR to signifi-
cantly enhance the completeness and robustness of the seg-
mentation, particularly in regions with complex boundaries
or densely packed entities. After iterating through the ad-
ditional prompts and refining the masks, the USR module
updates the entity-level map ME , producing a more refined
and comprehensive entity segmentation map. This output
ensures that all perceptually distinct entities are effectively
segmented, addressing the under-segmentation limitations
of SAM’s AMG mode.

3. More Details of Experiments

3.1. More Details of Datasets

For qualitative comparison, we adopt the validation set
of the EntitySeg dataset [17]. The EntitySeg dataset
comprises 33,227 high-resolution images aggregated from
COCO [15], ADE20K[25], Pascal VOC[5], LAION [19],
Open Images [12], and many other famous datasets. It fea-
tures precise, class-agnostic entity masks for open-world
segmentation. Unlike prior datasets, EntitySeg empha-
sizes high-quality annotations and complex scenarios. As
86.23% of original images are of high resolution (over
1000px×1000px), a low-resolution version is created by re-
sizing images to below 800px×1333px. The validation set
of EntitySeg has 1,314 images in total.

To test the robustness of the proposed method, we con-
duct visual comparison in the paper and the supplementary
material with images from SA1B [11], T-LESS [8], Ur-
ban100 [9], NDD20 [20], LVIS [7], V2X-SIM [14], Sketch
[4], and other self-collected images from the internet.

Algorithm 3: Under-Segmentation Refnement

Input: Entity-level map ME . Part-level masks M32
P

and subpart-level masks M32
SP . Superpixel

map MS . SAM prompt encoder and decoder
SED. Image feature F from SAM encoder.

1 Find the unsegmented area NME
in the image by

ME .
2 Initiate empty coordinate array PA to record

additional prompts.
3 for Each superpixel MSi

in MS do
4 if Any pixel of MSi is not segmented by ME

then
5 MP,Si

is a mask in M32
P or M32

SP that covers
MSi

.
6 if MP,Si

exists then
7 Append the centroid of MP,Si

to PA.

8 else
9 Append the centroid of MSi to PA.

10 MPA
≡ SED(F, PA)

11 for Each superpixel Mi in MS do
12 if Less than ρu of Mi is in NME

then
13 Drop Mi.

14 if More than ρs of Mi is covered by one mask in
ME then

15 Merge Mi with the mask.
16 Drop Mi.

17 Use a greedy algorithm to choose masks in MS to
fill NME

and update ME to M̆E .

3.2. More Details of Implementation
In this work, we focus on optimizing the performance of
SAM’s AMG mode, which led us to directly adopt the pre-
trained SAM backbones: ViT-B, ViT-L, and ViT-H. Addi-
tionally, we select the top k = 10 most similar centroids
to centroid c for constructing the adjacent mask similarity
matrix. For evaluation, we adopt different strategies de-
pending on the dataset. For the benchmark dataset, En-
titySeg, we utilize the benchmark evaluation metric AP e,
which is specifically designed for entity segmentation. AP e

is computed by averaging precision over all entities at dif-
ferent IoU thresholds, considering class-agnostic mask pre-
dictions, with rankings based on confidence scores. This
metric measures the quality of segmentation across multi-
ple thresholds, with a strong emphasis on minimizing the
presence of overlapping masks, ensuring that each entity is
distinctly represented. The usage of AP e helps evaluate
the effectiveness of our approach in producing clean, non-
overlapping masks that are crucial for accurate entity-level
segmentation. For other public datasets [7, 20], we visualize
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Figure 2. Example visualizations comparing various methods on NDD20 (above and below water) [20] and LVIS (multiple objects and
single one) [7].

Method APe APe
50 APe

75

CropFormer 18.16 28.99 19.65
Mask2Former 17.88 30.42 18.33

E-SAM (Ours) 19.21 29.55 20.32

Table 1. Comparisons on panoptic segmentation performance on
COCO val2017 dataset [3].

the segmentation results to provide qualitative comparisons
with existing state-of-the-art methods and further validate
the robustness of our E-SAM framework.

3.3. Extended Experiments

Comparisons on Panoptic Dataset. Extensive experi-
ments were conducted to compare E-SAM against Crop-
Former [17] and Mask2Former (panoptic) [3] using 100
images sampled from the COCO val2017 dataset [3]. As
demonstrated in Tab. 1, E-SAM achieves superior over-
all panoptic segmentation performance, surpassing both
methods by a margin of at least 1.05% AP e. However,
in terms of APe

50, Mask2Former outperforms E-SAM by
0.87% APe

50. This discrepancy can be attributed to the
IoU threshold of 0.5 employed by APe

50 for determining
true positives, where Mask2Former, specifically designed
for panoptic segmentation tasks, demonstrates better per-
formance under this metric.
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Figure 3. Qualitative comparison on open-world images (cartoon style), V2X-SIM (synthetic)[14], and Sketch[4].

3.4. Extended Visual Comparisons for 2D Images

Fig.2 shows the qualitative results of our methods and oth-
ers to compare. Images are chosen from NDD20 [20] and
LVIS [7] to see E-SAM’s performance under a range of do-
mains like near the water, below the water, multiple objects,
and a single object within the monotone background. Ob-
viously, E-SAM’s result is better than other methods when
segmenting pictures near the water, which is affected by the
reflection, not water waves. For complex backgrounds with
multiple objects (the third to last image), E-SAM shows
great boundary detection ability inherited from SAM with-
out over-segmentation. Such ability outstands when han-
dling small objects clustered together. To demonstrate the
robustness of the proposed method, we show more visual-
ization examples from non-naturalistic images.

Comparisons on Cartoons. For the first two rows in Fig. 3,
we conducted a visual comparison between prior SOTA en-
tity segmentation methods and SAM-based methods using
open-world cartoon-style images. It can be observed that
our E-SAM outperforms all methods except CropFormer.

Given that our approach is training-free, achieving compa-
rable performance to CropFormer is an acceptable trade-off,
demonstrating the practicality and efficiency of our method.
Comparisons on Simulation Images. As shown in the
third and fourth rows of Fig. 3, E-SAM outperforms other
methods, particularly when handling numerous similar ob-
jects in the background. This effectively demonstrates the
robustness and effectiveness of the E-SAM framework. No-
tably, unlike CropFormer, which struggles with distinguish-
ing same-class objects in the background and tends to ex-
aggerate foreground elements, E-SAM achieves a better
balance between foreground and background segmentation.
For instance, in the third row, E-SAM accurately segments
the trees in the background.
Comparisons on Sketches. E-SAM’s performance is close
to CropFormer when handling sketches. Since sketches
consist of only lines, it confuses SAM and affects the in-
formation for E-SAM. In contrast to SAM and Semantic-
SAM, our E-SAM effectively removes overlapping masks
and successfully merges masks corresponding to the same
entity. Given its training-free nature, this highlights the nov-
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Figure 4. Segmentation visualization of various approaches for the 360 images in indoor&outdoor environment (self-collected), simulation
[23], and Stanford2D3D [2] dataset.

Input image

EntityFramework CropFormer SAM’s AMG

Semantic-SAM’s AMG E-SAM (Ours)

Figure 5. Sample detailed visualization of various approaches for
the 360 image.

elty of our E-SAM even more clearly.

θO γO δ

Value APe Value APe Value APe

0.7 19.5 0.3 17.6 0.01 34.1
0.75 19.8 0.9 18.2 0.05 35.0
0.8 20.3 0.6 20.3 0.1 34.4
0.9 19.6 1.0 19.6 0.2 33.8

τ ρ Point Prompts
Value APe Value APe Value APe

0 34.1 0 43.4 16/16 39.8
0.05 34.5 0.1 43.6 16/32 41.9
0.1 35.0 0.3 42.9 16/64 42.5
0.2 34.2 0.5 42.6 32/64 43.6

Table 2. Ablation study on hyperparameters and the number of
point prompts. All performance is evaluated in each module.

3.5. Extended Visual Comparisons for 360 Images
Fig.4 and Fig.5 demonstrate segmentation results of vari-
ous methods on 360◦ images. We chose to evaluate 360◦

images to validate the robustness of our E-SAM, specifi-
cally under challenging conditions of large FoV and severe
distortion, to assess whether E-SAM maintains satisfactory
performance. This exploration also considers the scalability



Backbone APe APe
50 APe

75

ViT-B (Superpixel) 5.22 10.70 4.24
ViT-L (Superpixel) 6.52 13.49 5.52
ViT-H (Superpixel) 6.66 13.71 5.56

ViT-H (E-SAM) 50.2 66.8 49.9

Table 3. E-SAM vs. Superpixel-based fusion.

of E-SAM for applications in 360-degree devices like VR,
AR, or autonomous driving.

In Fig. 4, we compare our E-SAM with prior meth-
ods across indoor and outdoor open-world scenes, syn-
thetic environments, and the indoor benchmark dataset
Stanford2D3D [2]. In both indoor and outdoor open-world
scenarios, E-SAM achieves accurate segmentation, such as
the table in the first column, and demonstrates strong per-
formance even for small objects near the equator of the
image, significantly outperforming the other methods. In
synthetic 360-degree environments, E-SAM maintains re-
fined and detailed entity-level segmentation results, show-
ing resilience against real-synthetic domain gaps. In the
Stanford2D3D dataset, E-SAM consistently delivers pre-
cise masks for distant or smaller objects, while our three
modules collaboratively reduce overlapping masks and ef-
fectively refine SAM AMG results into entity-level segmen-
tation maps, outperforming SAM and Semantic-SAM.

In Fig. 5, we further zoom in on the details of our E-
SAM and prior methods for 360 images to demonstrate the
robustness of our approach. It is evident that, compared to
existing ES methods, E-SAM accurately segments smaller
objects and provides results that align more closely with hu-
man visual perception, such as distinguishing two bushes
as separate entities, thereby reducing ambiguous segmenta-
tion. Compared to SAM and Semantic-SAM, our E-SAM
effectively produces entity-level mask results for distorted
and very small objects, even without additional training.
This further highlights the practicality and effectiveness of
our approach.

3.6. More Analysis

Hyperparameters Discussion. Our hyperparameter ab-
lation study, presented in Table 2, systematically evalu-
ates key architecture parameters. Through extensive ex-
periments on the EntitySeg-LR dataset, we carefully cali-
brated θO and γO using the MMG module, while δ and τ
were optimized via MMG and EMR. The final tuning of ρ
and point-prompts-per-side was conducted with the com-
plete E-SAM framework, achieving optimal performance
and demonstrating superior effectiveness in our experimen-
tal settings.
Comparison of Combine Superpixels with SAM. Given

Cr
op

Fo
rm

er
E-

SA
M

Im
ag

e
G

ro
un

d 
Tr

ut
h

Cr
op

Fo
rm

er
E-
SA

M
Im

ag
e

Cartoon Panorama Panorama
AI Generated

(DALLE-3)

Figure 6. Example visualizations of failure cases.

that all three modules utilize superpixels for different pur-
poses, concerns may arise that E-SAM’s performance is
overly dependent on the superpixel map. To address this,
we conducted experiments by directly combining SAM’s
AMG with superpixels to generate the ES map (see Tab. 3).
Specifically, when we fused the masks returned by SAM
using superpixel guidance, we found that this direct inte-
gration actually degraded SAM’s AMG performance. In
contrast, our E-SAM demonstrates significant performance
gains, underscoring that its novelty and effectiveness stem
from the design of the three modules rather than merely
from combining superpixels with SAM’s AMG.
Limitation of E-SAM. Although our current E-SAM
demonstrates promising generalization capabilities, it still
has several limitations. For instance, E-SAM retains SAM’s
computationally intensive image encoder, and the post-
processing applied by our modules to SAM’s outputs results
in inference times that are significantly longer than those
of ES-based methods. Moreover, Fig. 6 lists some failure
cases. They may fall into two categories: (1) Since E-SAM
inherits SAM’s instance-level awareness, it lacks sensitivity
to stuff entities (‘tree’), leading to less satisfactory perfor-
mance on EntitySeg. (2) Without ES dataset training, E-
SAM cannot account for annotation biases such as backrest
present in EntitySeg.
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