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6. More Details of EMatch
In this section, we provide more details about the forward
process of EMatch, including the Temporal Recurrent Net-
work (TRN), Spatial Contextual Attention (SCA), and Cor-
respondence Matching.

6.1. Temporal Recurrent Network (TRN)
We design Temporal Recurrent Network (TRN) to itera-
tively aggregate asynchronous events, aligning temporal in-
formation retained by event voxels to the features at the last
time step. Specially, we split event voxels into K groups
chronologically, denoted as {VTi

|i = 0, ...,K}, which are
processed as shown in Fig. S1.

For each time step k, we use stacked resBlocks to ex-
tract intermediate features Cl=i

Tk
from VTk

layer by layer,
and use convGRUs to fuse the intermediate features Cl=i

Tk

with the historical features F l=i
Tk−1

, obtaining the current fea-
tures F l=i

Tk
. To fully utilize historical information, we addi-

tionally introduce features F l=i−1
Tk

as input when extracting
intermediate features Cl=i

Tk
. This process is represented as:

Cl=i
Tk

= resBlock(concat(Cl=i−1
Tk

, F l=i−1
Tk

)), (S1)

F l=i
Tk

= convGRU(F l=i
Tk−1

, Cl=i
Tk

). (S2)

The operation of each convGRU can be represented as:

rt = σ(Wr · [FTk−1
, CTk

] + br),

zt = σ(Wz · [FTk−1
, CTk

] + bz),

F̃Tk
= tanh(Wh · [rt ∗ FTk−1

, CTk
] + bh),

FTk
= (1− zt) ∗ FTk−1

+ zt ∗ F̃Tk
.

(S3)

In addition, we construct a top-to-bottom connection
pathway for feature {F l=i

Tk
|i = 0, 1, ..., n} between itera-

tions to facilitate the flow of information between layers.
Typically, we take the feature F l=n

TK
from the highest layer

as the result of feature extraction. If multi-scale optimiza-
tion is used, features {F l=i

Tk
|i = 0, 1, ..., n− 1} from lower

layers can also be utilized, and the network depth can be in-
creased as needed. In the paper, we constructed a four-layer
architecture and selected the features from the last two lay-
ers to adopt optimization at two scales.

6.2. Spatial Contextual Attention (SCA)
Previously, we have extracted reference and target fea-
tures F1, F2 from event voxels using TRN independently.
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Figure S1. Operations of Temporal Recurrent Network (TRN).
Event voxel is processed iteratively in a time-ordered manner to
align asynchronous visual information to the target time. Finally,
we obtain temporally aggregated multi-scale features F l=i

TK
.

Now we further map them into a high-level representation
space with Spatial Contextual Attention (SCA) as shown in
Fig. S2.

Before SCA, we firstly add positional encoding to fea-
tures F1, F2 for the supplement of missing position infor-
mation during attention operations as follows:

PE(pos, 2i) = sin(
pos

1000002i/dmodel
),

PE(pos, 2i+ 1) = cos(
pos

1000002i/dmodel
).

(S4)

Then, we use self-attention, cross-attention, and feed-
forward networks to construct a SCA block, which is
stacked into six layers with shared parameters. For each
block, the features F1 and F2 are symmetrically processed.
The formula of attention operation is represented as:

attention(q, k, v) = softmax(
qkT√
d
)v. (S5)

First, we employ self-attention to enhance the quality of
the features through global aggregation, which means the
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Figure S2. Operations of Spatial Contextual Attention (SCA). Us-
ing the attention mechanism to aggregate global information is
beneficial for leverage spatial context to build more expressive
feature representation, facilitating the fusion of optical flow and
stereo matching in high-level representation space.

query, key and value come from the same feature:

fi = selfAttention(q = fi, k = fi, v = fi). (S6)

Then, we use cross-attention to blend two different fea-
tures together, which means the key and value come from
the same feature but the query come from another feature:

fi = crossAttention(q = fi, k = fj , v = fj). (S7)

Finally, a feed-forward network (FFN) achieved by MLP
is adopted to generate feature residuals, which are added to
the original features F0 and F1:

F̂i = Fi + FFN(concat(Fi, fi)). (S8)

Notably, to reduce the computational complexity of
Transformer, we have adopted the shifted local window at-
tention strategy proposed by Swin Transformer [8]. We split
the features to a fixed number of local windows rather than a
fixed window size, just like GMFlow [14]. Specifically, for
the feature of size H×W , if we set the total number of local
windows as K ×K, the local window size will be H

K × W
K .

And the window partition will be shifted by ( H
2K , W

2K ) to
introduce cross-window connections.

6.3. Correspondence Matching
In the following, we will provide a detailed description of
how dense correspondence matching estimates optical flow
and disparity. First of all, we should construct correlation
volume C by taking the dot product between all pairs of
feature vectors F̂1, F̂2 ∈ RH×W×D. For optical flow and

stereo matching, it can be respectively computed as follows:

Cflow(a, b, x, y) =
∑
i

F̂1(a, b, i) · F̂2(x, y, i), (S9)

Cdisparity(a, b, x) =
∑
i

F̂1(a, b, i) · F̂2(x, b, i). (S10)

For optical flow estimation, we should find pixel-wise
dense correspondences on the 2D plane. But for rectified
stereo matching, we only need to find the per-pixel disparity
along the horizontal scanline (i.e. 1D plane). Therefore, the
correlation volume size of optical flow is H×W×(H×W ),
while the stereo matching is H ×W ×W .

Next, for each reference pixel, we will select the target
pixel with the highest correlation (i.e. the highest feature
similarity) to construct a corresponding relation. Specifi-
cally, we use softmax operation to normalize the correlation
volume C to obtain matching distribution M :

Mflow(a, b, x, y) =
exp[Cflow(a, b, x, y)]∑
i,j exp[Cflow(a, b, i, j)]

, (S11)

Mdisparity(a, b, x) =
exp[Cdisparity(a, b, x)]∑
i exp[Cdisparity(a, b, i)]

. (S12)

Then, with the matching distribution M , the correspond-
ing relation grid G can be determined by taking a weighted
average of all the candidate coordinates. For optical flow,
we use 2D grid U2d ∈ RH×W×2, which stores arranged
2D coordinates on the 2D plane. For stereo matching, we
use 1D horizontal position U1d ∈ RW , which only stores
arranged 1D coordinates on the scanline.

Gflow(a, b) =
∑
i,j

Mflow(a, b, i, j)U2D(i, j), (S13)

Gdisparity(a, b) =
∑
i

Mdisparity(a, b, i)U1d(i). (S14)

Finally, the displacement D can be obtained by comput-
ing the difference between the corresponding and initial co-
ordinate grid. For the optical flow and stereo matching, we
respectively use 2D gird G2D ∈ RH×W×2 and 1D grid
G1D ∈ RH×W as initial coordinate grid.

Dflow = Gflow −G2d ∈ RH×W×2, (S15)

Ddisparity = Gdisparity −G1d ∈ RH×W . (S16)

7. Previous Task-specific Frameworks
In this section, we summarize previous task-specific frame-
works of optical flow and stereo matching to explain their
incompatible architectures hindering unification, and high-
light the advantages of EMatch in eliminating barriers be-
tween temporal and spatial domains.
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Figure S3. Comparison of our unified framework with other task-specific frameworks. Previous works designed frameworks within their
respective domains, introducing many additional designs that are incompatible across tasks. Instead, our framework unifies optical flow
and stereo matching (within temporal and spatial domains) into a model with a shared representation space through dense correspondence
matching, which consists of feature encoder, feature enhancement, correspondence matching, and refinement.

As shown in Fig. S3, previous works for optical flow
estimation and stereo matching have developed many spe-
cialized frameworks to efficiently extract task-specific fea-
tures. For optical flow estimation, most frameworks derive
temporal motion features either from accumulated events
[3, 13, 16] or event-based cost volume [5–7, 9]. For stereo
matching, many frameworks [1, 10, 12, 15] employ a classic
approach to compute spatial matching costs from events.

For event-based optical flow estimation, previous works
generally follow two pipelines. Firstly, EV-Flownet [16]
was proposed as the first deep learning framework follow-
ing Flownet [4], which extracted motion features directly
from event frames. Secondly, E-RAFT [5] introduced an-
other framework inspired by RAFT [11] to retrieve motion
features iteratively from event-based cost volume. Both of
them regress flow from motion features, rather than calcu-
lating flow by dense correspondence matching as us.

For event-based stereo matching, most deep-learning
works follow a traditional stereo matching pipeline, con-
sisting of feature extraction, cost computation, cost aggre-
gation, disparity computation and refinement. By contrast,
they focus more on the representation of event features.
For example, DDES [12] proposed the first learning-based
network with event sequence embedding, and se-cff [10]
proposed another network with concentrated event stacks.
Obviously, their frameworks are all built around construct-
ing spatial matching costs to optimize the disparity results,
which introduce a lot of task-specific redundant designs.

In conclusion, existing works are confined to these task-
specific frameworks, resulting in a significant domain gap
between optical flow and stereo matching, which greatly

hinders their unification. Unlike them, we innovatively pro-
pose to utilize dense correspondence matching to unify op-
tical flow and stereo matching within the same domain. By
sharing the representation space during feature extraction,
we facilitate knowledge transfer and integration between
temporal domain and spatial domain, effectively achieving
the unification of optical flow and stereo matching.

8. Supplementary Experiments

In this section, we first conduct an in-depth examination of
the shared representation space for optical flow and stereo
matching mentioned in the paper, by visualizing intermedi-
ate features of EMatch. Then, we summarize and analyze
the complexity of existing models in terms of model size
and running speed. Finally, we provide additional visual-
izing results to further supplement the qualitative compar-
isons between EMatch and other SOTA methods.

8.1. Analysis of Representation Space

EMatch can unify optical flow and stereo matching into the
same domain within a shared representation space. When
performing single-task training, EMatch (single) converges
to domains of flow and disparity separately (i.e. temporal
and spatial domains). When performing multi-task train-
ing, EMatch (unified) converges to a shared domain across
flow and disparity. In Fig. S4, we visualize the intermediate
features of these two models, showing how the shared rep-
resentation space unifies the two tasks into a shared domain.

Firstly, we visualize the intermediate features of TRN.
In the paper, we divide event voxels into K = 5 groups, so
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Figure S4. More visualizing features of EMatch within different domains. The figure shows the results of TRN over five iterations and the
results of SCA over six layers. We apply PCA on intermediate features of TRN and SCA, and we also visualize attention maps from six
stacked layers of SCA. The results show that, EMatch with multi-task training can unify optical flow and stereo matching into the same
domain by leveraging a shared representation space.

Table S1. Analysis of model complexity. Our model has a similar
complexity to other methods when deployed for single tasks, but
achieves the highest performance with lower complexity when de-
ployed for multiple tasks.

Task Method Params FLOPs

Flow

ERAFT [5] 5.3M 251G
TMA [7] 6.8M 344G

IDNet [13] 2.5M 1202G
EMatch (single) 6.7M 502G

Disparity
Se-cff [10] 5.9M 225G
TESNet [2] 5.6M 2478G

EMatch (single) 6.7M 502G

Flow&Disparity
TMA[7]+TESNet[2] 12.4M 2822G

EMatch (unified) 6.7M 1004G

we visualize features during five iterations of TRN. The re-
sults show that TRN can gradually update the state of event
features during iterations, aligning them to the target time.
Through TRN, EMatch maps event voxels to a low-level
representation space, where the features represent the visual
state at a specific moment.

Secondly, we visualize the intermediate features of SCA.
As mentioned earlier, we stack six layers of SCA blocks
with shared parameters. Therefore, we visualize the fea-
tures of these six layers separately. Additionally, we pro-

vide the attention maps of self-attention and cross-attention
within each SCA block. Through SCA, EMatch can map
features to a high-level representation space, where the fea-
tures can be used for dense correspondence matching.

After multi-task training, optical flow and stereo match-
ing can be unified within shared representation spaces. In
our paper, we mainly focus on the high-level representation
space, in which similar features are assigned to the same
pixels while dissimilar features are assigned to different pix-
els. Overall, EMatch can learn priors from temporal and
spatial domains within shared representation space, achiev-
ing the unification of optical flow and stereo matching.

8.2. Analysis of Model Complexity

We summarize the complexity of the existing models, in-
cluding the number of parameters and computational cost,
as shown in the Table S1. For every single task, EMatch
(single) achieves the highest performance while having a
similar complexity compared to other models, striking a
balance between model size and running speed. For mul-
tiple tasks, EMatch (unified) can deploy optical flow and
stereo matching with lower complexity by sharing feature
representation spaces. What’s more, when utilizing EMatch
(unified), the representation of event-based inputs for opti-
cal flow and stereo matching are identical, which can reduce
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Figure S5. More qualitative comparison of EMatch with other methods. Compared to previous methods, our model can be trained using
both optical flow and disparity simultaneously, alleviating overfitting on a single task in temporal or spatial domains.

the complexity of preprocessing event data.

8.3. More Qualitative Results
In Fig. S5, we present more qualitative comparison of dif-
ferent models, including the EMatch with different training
strategies and other SOTA methods. By observing the fore-
ground objects, it is clear that the predictions from EMatch
models are more accurate, and the EMatch-unified demon-
strates more significant advantages. Notably, we used data
augmentation to compensate for the absence of original dis-
parity labels at the edges, making the disparity predictions
more natural. This does not affect the quantitative results,

as there are no ground truths at the edges when testing.
In Fig. S6, we present more qualitative comparison for

generalization performance of current models on different
event data distributions. We simulate a sparser data dis-
tribution by changing the original event sampling settings
(reducing sampling time dt, or deleting events at intervals)
to qualitatively test the performance degradation of differ-
ent models. It can be seen that our unified model has better
generalization performance compared to other single-task
models, because it learns priors from a wider range of data
distributions (i.e. optical flow in temporal domain and dis-
parity in spatial domain).
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Figure S6. More qualitative comparison for generalization performance. To simulate different data distributions, we reduce dt to 1/n of its
original setting, or keep dt fixed but sample events at intervals to reduce its number by 1/n. Obviously, EMatch-unified performs the best.
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