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Supplementary Material

A. Preliminary: Diffusion Transformer
Currently, The state-of-the-art text-to-image Diffusion

model architectures are based on Diffusion Transformers
(DiT)[50], including models such as SD3[10], FLUX[31].
These models integrate diffusion processes with Trans-
former architectures to improve text-to-image generation,
yielding high-quality and accurate text-to-image synthesis.

Our approach is based on the FLUX.1 pre-trained model,
which consists of three key components: T5 as the text en-
coder, a VAE for image compression, and a Transformer-
based denoising network. Specifically, The denoising net-
work divides the latent noise into several patches and treats
each patch as a noise token, denoted as X ∈ RN×d, where
N is the number of noise tokens and d is the dimension-
ality of each token. To effectively introduce spatial posi-
tion information in different noise patches, FLUX.1 em-
ploys rotary position encoding (RoPE)[75] to encode spatial
information within each noise patch. Meanwhile, the text
prompts are encoded into text tokens CT ∈ RM×d through
the T5 text encoder, where M represents the number of text
tokens. These image and text tokens are then fused by con-
catenation to form a joint representation. After feature fu-
sion, the image-text token sequence is fed parallel into a
transformer-based denoising model. The model iteratively
denoises the image, progressively restoring a clear image
and ultimately generating a high-quality image that aligns
with the textual description.

B. Position Encoding Offset
The PE offset strategy was proposed by method[76],

which applies a fixed displacement to position encodings
and was proved to lead to faster convergence. This offset
is uniform across all encodings within the subject condition
image. In our experiments, we set this offset to 64 in the
height dimension. Mathematically, for each position encod-
ing PE(i, j) in the subject condition image, the adjustment
is:

PE(i, j)← PE(i, j) + ∆h · eh (16)

where eh is the unit vector along the height dimension, and
∆h = 64 ensures distinct separation between spatial and
subject conditions.

C. Trianing Data
For spatial control tasks such as depth, canny, and Open-

Pose, we employ the MultiGen-20M dataset[98] as our
primary training resource. Regarding subject control, our
training is conducted using the Subject200K dataset[76].

Figure 6. Visualization of samples in private Multi-view Human
Dataset.

For face control, we utilize a curated subset of the LAION-
Face dataset[99], supplemented by a collected private multi-
view human dataset (See Fig 6), where all human images
are preprocessed through InsightFace[9] for precise crop-
ping and alignment to ensure consistency and accuracy in
our training inputs.

D. Details of KV Cache
More details of KV Cache for Efficient Conditional Im-

age Generation is shown in the algorithm 1.

E. Single Condition Quantitative Comparison
Settings. In this section, we compare our method with

Controlnet[93], OmniControl[76], and Uni-Control[98] us-
ing two types of conditioning: Depth and Canny. For the
subject condition, We compare our method with OmniCon-
trol[76], IP-Adapter(IPA)[89], and Uni-ControlNet[98].
(To ensure a fair and consistent comparison, all methods
are implemented using FLUX.1 dev as the base model, with
configurations and parameters sourced from publicly avail-
able official[32, 76, 93] and community resources[27, 85]
with recommended parameters, while Uni-ControlNet em-
ploys its official implementation[98] based on the SD1-5
architecture.)

Data. For the Depth map and Canny edge conditions,
comprehensive evaluations were conducted on the COCO



Condition Method
Controllability Generative Quality Text Consistency
F1 ↑ /MSE ↓ FID ↓ MAN-IQA ↑ CLIP-Score ↑

Canny

ControlNet 0.232 20.325 0.420 0.271
OminiControl 0.314 17.237 0.471 0.283
Uni-ControlNet 0.201 17.375 0.402 0.279
Ours 0.311 16.074 0.503 0.286

Depth

ControlNet 1781 23.968 0.319 0.265
OminiControl 1103 18.536 0.431 0.285
Uni-ControlNet 1685 21.788 0.423 0.279
Ours 1092 20.394 0.469 0.289

Table 2. Quantitative comparison with baseline methods on single condition tasks.

Condition Method
Identity Preservation Generative Quality Text Consistency

CLIP-I ↑ DINO-I ↑ FID ↓ MAN-IQA ↑ CLIP-Score ↑

Subject

IP-Adapter 0.700 0.429 79.277 0.511 0.266
OminiControl 0.663 0.445 72.298 0.579 0.276
Uni-ControNet 0.641 0.417 86.369 0.439 0.204

Ours 0.667 0.443 71.910 0.595 0.283

Table 3. Quantitative comparison with baseline methods on single condition tasks.

Condition Method
ID Preservation Controllability Generative Quality Text Consistency

Face Sim. ↑ MJPE ↓ FID ↓ MAN-IQA ↑ CLIP-Score ↑

Openpose+Face

ControlNet+IPA 0.049 166.7 227.06 0.229 0.156
ControlNet+Redux 0.027 141.5 200.70 0.293 0.217

Uni-ControlNet 0.048 258.8 203.31 0.481 0.147
ControlNet+InstantID 0.521 83.9 203.17 0.345 0.250

ControlNet+PhotoMaker 0.343 86.3 213.83 0.420 0.281
ControlNet+Uni-portrait 0.456 46.0 203.07 0.564 0.253

Ours 0.530 36.7 184.93 0.586 0.285

Table 4. Quantitative comparison with baseline methods on multi-condition tasks.

2017[39] validation set comprising 5,000 images. All gen-
erated outputs strictly preserved the original image res-
olutions and aspect ratios, with textual prompts derived
from the corresponding ground-truth captions of the dataset.
For subject control scenarios, we adopted the Concept-101
benchmark dataset[30] to assess model performance. Each
reference image was paired with its semantically aligned
textual description as the conditioning prompt.

Metrics. To comprehensively evaluate the performance
of each algorithm, we assess four key aspects: 1. Controlla-
bility: We extract structural information from the generated
images using the corresponding structure extractor, obtain-
ing the structure map. The F1 Score is computed between
the extracted and input edge maps in the edge-conditioned
generation, and the MSE is calculated between the extracted
and original condition maps for the depth task. 2. Text
Consistency: We use the CLIP-Score[18, 55] to evaluate
the consistency between the generated images and the in-

put text. 3. Generative Quality: The diversity and quality
of the generated images are assessed using FID[19], MAN-
IQA[87].4. Identity Preservation: For the subject condi-
tion, we use CLIP-I[55] and DINO-I[4] to evaluate identity
preservation. Specifically, CLIP-I computes the cosine sim-
ilarity between image embeddings extracted by the CLIP
image encoder for both generated and reference images.
Similarly, DINO-I measures identity preservation by calcu-
lating the cosine similarity of image embeddings obtained
through the DINO encoder framework.

Quantitative Analysis. As shown in Table 2, our pro-
posed method demonstrates superior performance across
multiple evaluation metrics. Under the Canny condition,
our approach outperforms all comparative methods in terms
of generation quality and text consistency, while achieving
the second-highest score in controllability. In the depth con-
dition, our method exhibits dominant performance in both
controllability and text consistency. Regarding generation



Algorithm 1 KV Cache for Efficient Conditional Image
Generation
Require:

1: Conditional features {condi}mi=1 for m conditions
2: Denoising steps T = {t0, t1, ..., tT }

Ensure: Generated image x0 with reduced latency
3: Initialize KV cache dictionary D ← ∅
4: Generate initial noisy image xN ∼ N (0, I)
5: for timestep t ∈ {tT , tT−1, ..., t0} do
6: if t = tT (First step) then
7: for each condition branch i ∈ {1, ...,m} do
8: Compute keys/values: KCi

, VCi
= fθ(condi)

9: Cache KV pairs: D[i]← (KCi
, VCi

)
10: end for
11: end if
12: Retrieve cached KV pairs: {(KCi

, VCi
)}mi=1 ← D

13: Compute self-attention using current noise and text
features: Qdenoising,Kdenoising, Vdenoising = fθ(xt, t)

14: Fuse conditions via cached K/V pairs:

Q = Qdenoising,

K = Concat (Kdenoising,KC1
, . . . ,KCm

) ,

V = Concat (Vdenoising, VC1 , . . . , VCm)

Output = Softmax
(
QK⊤
√
d

)
V

15: Update latent: xt−1 = Denoise(xt, t,Output)
16: end for
17: return Final image x0

quality, while our method ranks second position in the FID
metric, it achieves first according to the MAN-IQA met-
ric. These comprehensive results substantiate the superior-
ity of our approach across most evaluation criteria, particu-
larly highlighting its exceptional performance in controlla-
bility, generation quality, and text consistency. As shown in
Table 3, Under the Subject condition, our approach outper-
forms all comparative methods in terms of generation qual-
ity and text consistency and achieves competitive results on
identity preservation.

Qualitative Analysis. We show some results about
spatial control in figure 9. Under identical conditional
input configurations, both ControlNet and OminiControl
demonstrate significant blurring artifacts in the synthe-
sized images. In contrast, our framework consistently pre-
serves superior visual fidelity across all evaluated scenar-
ios. This qualitative advantage is particularly pronounced
in the preservation of fine-grained details and structural in-
tegrity, thereby substantiating the enhanced performance of
our Position-Aware Training Paradigm. We have also visu-

alized several subject control results in Figure 10 to demon-
strate the effectiveness of our method in terms of identity
preservation, generative quality, and text consistency. (The
prompts utilized in the generated images include: in the for-
est, in the library, on a snow-covered mountain, in the city,
in a room, in front of a castle, floating on water, on the
beach, on a mountain, in the desert, and on a snowy day.)

F. Multi-Condition Quantitative Comparison
Settings. In this section, we conduct comparisons

using face + OpenPose as multi-condition configurations,
against several plug-and-play baseline methods including:
Controlnet+IP-Adapter[89], Controlnet+Redux[32],
and Uni-Controlnet[98] and several SOTA play-
and-plug identity customization methods, including
Controlnet+InstantID[78], Controlnet+PhotoMaker[37],
and ControlNet+Uni-portrait[17]. (For several plug-and-
play baseline methods, we utilize official FLUX-based
implementations such as OminiControl and community-
driven implementations including ControlNet, IPA, and
Redux. For identity customization methods, we adopt of-
ficial implementations based on SD1-5 (e.g., Uni-portrait)
and SDXL (e.g., PhotoMaker, InstantID) as base models,
along with their corresponding ControlNet modules.)

Data. For evaluation, we constructed a comprehensive
dataset comprising three components: (1) 1,000 randomly
sampled face images from the FFHQ dataset for face con-
trol inputs; (2) 1,000 full-body or half-body human images
crawled from Laion face dataset[99], from which OpenPose
information was extracted for spatial control inputs; and (3)
1,000 text prompts generated by GPT, each describing a
person with specific characteristic and locations. Each al-
gorithm generated 1,000 images based on these inputs for
evaluation. This diverse dataset ensures a thorough assess-
ment of the models’ capabilities in handling various control
conditions.

Metrics. To comprehensively evaluate the performance
of each algorithm, we assess several key aspects: 1. Con-
trollability: The Mean Joint Position Error (MJPE) metrics
computed between the extracted and input openpose maps
in the pose generation. 2. Text Consistency: We use the
CLIP-Score to evaluate the consistency between the gener-
ated images and the input text. 3. Generative Quality: The
diversity and quality of the generated images are assessed
using FID[19], MAN-IQA[87]. 4. Identity Preservation:
For the face condition, we use face similarity[9] to evalu-
ate identity preservation. For the OpenPose condition, our
controllability metric is quantitatively assessed through the
Mean Joint Position Error (MJPE) metrics, which measure
the spatial consistency between the generated image and the
input OpenPose map. The evaluation procedure involves
three sequential steps: initially, key point information is ex-
tracted from both the generated image and the input condi-



tion using OpenPose. Subsequently, The Euclidean distance
for each joint is computed and averaged to obtain the MJPE
for a single image. This process is repeated for all images
in the test set, and the average MJPE serves as the model’s
controllability metric. By quantifying joint position devi-
ations, MJPE effectively evaluates the consistency between
generated images and input conditions. It is noteworthy that
a lower MJPE indicates superior spatial alignment and bet-
ter pose consistency between the generated image and the
input condition, thus reflecting higher controllability in the
pose generation process.

F.1. Quantitative Comparison
The quantitative results are presented in Table 4. Our

method achieves state-of-the-art performance across all
metrics. Specifically, it obtains the best Face Similarity,
demonstrating superior ID preservation. For controllabil-
ity, our approach achieve the lowest MJPE score and sig-
nificantly outperforms others. In terms of generative qual-
ity, our method achieves the lowest FID and highest MAN-
IQA, indicating better image quality and diversity. Addi-
tionally, it maintains strong text consistency with the high-
est CLIP score. These results collectively demonstrate the
effectiveness of our framework in balancing control preci-
sion, identity preservation, and generation quality under a
multi-condition combination.

It is noteworthy that in Table 4, certain algorithms exhibit
significantly inferior performance in terms of Face Simi-
larity (Face Sim) and Mean Joint Position Error (MJPE)
metrics compared to other methods. This is primarily at-
tributed to the fact that many competing methods fail to ef-
fectively transfer facial or pose features from the control
images, often resulting in generated images that are blurry,
distorted, or lack detectable facial or pose features. Conse-
quently, these methods are unable to accurately compute the
metrics required for face similarity or pose alignment. In
contrast, our approach ensures robust feature transfer and
precise alignment, enabling the generation of high-quality
images with clearly detectable facial and pose attributes,
which contributes to the superior performance reflected in
the metrics.

F.2. Visual Comparison
As illustrated in the figure 8, we present a visual compar-

ison with ID customization methods. Our method demon-
strates superior performance in facial similarity, control-
lability, and image quality compared to other approaches.
This indicates that our framework, despite being trained on
single conditions, exhibits strong plug-and-play adaptabil-
ity, effectively integrating multiple conditions without con-
flicts. In contrast, other methods often suffer from incom-
patibility between different modules, leading to degraded
facial similarity, controllability, and poor generation quality.

Figure 7. Visualization of results (1) under conflicting condition
inputs (2) under very high-resolution generation.

The visual results further validate the robustness and versa-
tility of our approach in handling complex multi-condition
generation tasks.

G. Visual Comparison of Resolution Adapt-
ability

As shown in the figure 11, we compare the controllability
of our method with DiT-based controllable baseline meth-
ods, including ControlNet and OmniControl, across differ-
ent resolutions. Clearly, our approach consistently demon-
strates strong controllability, high text consistency, and su-
perior image quality across resolutions ranging from low to
high. However, at lower resolutions, ControlNet exhibits
image distortion, while at higher resolutions, OmniControl
also suffers from image degradation. This demonstrates that
our method exhibits strong adaptability across different res-
olutions.

H. Limitations
While the proposed framework demonstrates significant

improvements in flexibility and computational efficiency
compared to existing DiT-based approaches, certain techni-
cal limitations remain and warrant further investigation. For
example, in multi-conditional scenarios involving conflict-
ing inputs, the model may generate artifacts characterized
by overlapping layers, as illustrated in Figure 7. Addition-
ally, our method cannot indefinitely upscale generated reso-
lutions. When the resolution becomes extremely high, there
is a decrease in the ability to control the output.



Figure 8. Visual comparison with Identity customization methods under multi-condition generation setting.



Figure 9. Visualization of spatial control generation.



Figure 10. Visualization of subject control generation.



Figure 11. Visual comparison with baseline methods under different resolution generation settings.(zoom in for a better view)
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