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In this supplementary material, we first provide fur-
ther discussion of our illumination adjustment strategy and
present the details of the VCRM block. We then provide
additional experimental results, including more quantitative
and qualitative analyses on the Dynamic Illumination Task
and Fixed Illumination Task.

1. Method

1.1. Illumination Adjustment Discussion

We compare our illumination estimation strategy with oth-
ers in Fig. A. One possible way for illumination estimation
is to treat each view separately as shown in Fig. A(a). Since
the supervision of the illumination adjustment map is lack-
ing, the estimated illumination adjustment maps vary a lot
among the views. Another common way is to estimate a
uniform illumination adjustment map for each view by in-
teracting information between views as Fig. A(b). The ad-
justment is the same for all views, which does not satisfy the
disparity constraint. In order to obtain the illumination ad-
justment map that complies with the view-consistency rela-
tion, we propose to explore the relationship between views
to estimate an illumination adjustment map for each view.
The unsupervised illumination loss ωvc is designed to con-
strain the view consistency as Fig. A(c).

1.2. Overall Structure of VCRM

As shown in Fig. B, VCRM adopts a multi-scale architec-
ture using 1, 1/2, 1/4 size of the original input. In each
scale, the View Consistent Feature Aggregation Unit (VC-
FAU) is implemented to explore the redundant information
of the views to recover the details.

Specifically, we calculate the average of La in the angu-
lar domain and concatenate the results with the original La

to alleviate the influence of noise. In each scale, we first
apply 2D residual blocks on the spatial domain to extract
the high-dimensional feature as F k

1 , where k represents the
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Figure A. Schematic diagram of different illumination adjustment
strategies. (a) The illumination map for each view is estimated
separately. (b) One uniform illumination map is estimated for each
view. (c) Our method considers all views and estimates the illumi-
nation map for each view. The view-consistent illumination loss is
designed to keep view consistency among the illumination maps.

different scales. Then F
k
1 is sent to the cascaded VCFAU

blocks HFAUk and the deep features of the current scale are
obtained:

F
k
i = H

i
FAUk

(
F

k
i→1

)
i = 1, 2, 3 (1)

We then exploit the transposed spatial convolution layers
to upscale the related features. The upsampled feature
F

1/2
3 →, F 1/4

3 → are concatenated with the F
1
3 and fed to

a decoder that has a similar structure with the encoder to
get the refined recovery result Lout.

1.2.1. View Consistent Feature Aggregation Unit

In VCFAU, we employ deformable convolution layers on
EPIs to further integrate information between different
views. Since the slope of lines in EPIs corresponds to
disparity information, we further import the disparity con-
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Figure B. An overview of our proposed VCNet network, which consists of an illumination estimator VCAIA and a corruption restorer
VCRM. In VCAIA, the illumination map is estimated and multiplied to the original input to light up the illumination. VCRM, whose basic
unit is VCFAU, further recovers the details of the light-up image and outputs the final results.

straint to help the model find correct and consistent comple-
mentary information.

Firstly, the input feature F
k
i ↑ RU↑V↑Hk↑Wk↑C is re-

shaped and fed into multiple 2D EPI convolutional layers on
the V-W and U-H subspaces to extract the horizontal (Fh)

k
i

and vertical (Fv)
k
i EPI features, respectively. To further

exploit the spatial-angular correlation in EPIs, we use the
deformable convolution to interact with the redundant in-
formation. Instead of respectively calculating the offset in
the deformable convolution for the horizontal and vertical
EPIs, we consider the disparity consistency in EPIs. As an
inherent scene property, the disparity is supposed to be con-
sistent in V-W and U-H subspaces. Therefore, we propose
to calculate one uniform offset for deformable convolution
layers in both the V-W and U-H subspaces. In particular,
we reshape and concatenate the horizontal EPI information
(Fh)

k
i with the vertical EPI information (Fv)

k
i . Then the

spatial convolution layers on spatial domain Hoff is imple-
mented to obtain the offsets:

(Fo! )ki = Ho!

([
(Fh)

k
i , (Fv)

k
i

])
, (2)

where (Foff )ki ↑ RU↑V↑Hk↑Wk↑18 and 18 corresponds
to 2D offsets of the 3 ↓ 3 points. The (Foff )

k
i integrates

information captured in both horizontal and vertical direc-
tions, which enables the model to better learn the correspon-
dence between cross views. For each point of the EPIs, we
compute the 2D offsets of the 3 ↓ 3 neighborhood region,
which represent the sampling positions on the related EPIs
in one angular and one spatial dimension. Specifically, in
horizontal EPI features (Fh)

k
i , the offsets represent the rel-

ative sampling positions (!v,!y) in V-W subspace. By

contrast, in vertical EPI features (Fv)
k
i , the offsets repre-

sent the relative sampling positions (!u,!x) in U-H sub-
space. Once the (Foff )ki is obtained, we fed them into the
2D deformable convolution layers to interact redundant in-
formation in V-W and U-H subspaces as follows:

(F ↓
h)

k
i = Hdeformh

(
(Fh)

k
i , (Foff )

k
i

)
, (3)

(F ↓
v)

k
i = Hdeformv

(
(Fv)

k
i , (Foff )

k
i

)
, (4)

where Hdeformh means the deformable convolution lay-
ers processed on V-W subspace, while Hdeformv means
the deformable convolution layers processed on U-H sub-
space. It is worth mentioning that the parameters of the de-
formable convolution layers differ between horizontal and
vertical processing. By using uniform offsets in V-H and
U-W spaces, angular information can be efficiently incor-
porated and maintain epipolar consistency. Then, the fea-
tures (F ↓

h)
k
i and (F ↓

v)
k
i are reshaped and concatenated in the

channel dimension. Finally, we employ spatial convolution
layers to aggregate the information in the horizontal and
vertical EPIs, whose output is added to the F

k
i to obtain

the output feature F
k
i+1.

2. Experiments

2.1. Dynamic Illumination Task

We further show the recovered EPIs in Fig. D, where the
slops of lines indicate the disparity. The EPIs recov-
ered from single-frame-based methods are heavily aliasing,
which means that they cannot recover consistent illumina-
tion of the corresponding points in different views.
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Figure C. Visual comparison on L3F-Fixed task, where the central view and EPIs of the recovery LFs are shown. Details are zoomed in
for comparison. Other methods either collapse by noise, or distort color, or produce blurry and under-/over-exposed images. Our VCNet
effectively removes the noise and reconstructs well-exposed image details. The related EPIs show that the proposed method also well
maintains the LF geometry.
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Figure D. Visual comparion of the recovery views and the EPIs.

2.2. Fixed Illumination Task

We evaluate all the methods under the fixed illumination
condition using the L3F-Fixed dataset. Fig. C provides a
visual comparison between our method and other SOTA
methods for low-light enhancement in various lighting con-

Table A. More results on the L3F-fixed task.

Method
L3F-20 L3F-50 L3F-100

PSNR→ / SSIM →/ LPIPS↑ PSNR→ / SSIM→ / LPIPS↑ PSNR→ / SSIM→/ LPIPS↑

SID[1] 22.64 / 0.74 / 0.1755 21.27 / 0.67 / 0.2844 17.03 / 0.56 / 0.3425
DID[4] 23.21 / 0.74 / 0.1515 20.90 / 0.64 / 0.2865 19.22 / 0.57 / 0.3643
SGN[2] 23.43 / 0.77 / 0.1586 21.81 / 0.69 / 0.2658 20.29 / 0.60 / 0.3655
resLF[6] 23.56 / 0.77 / 0.1763 22.09 / 0.70 / 0.2611 21.40 / 0.66 / 0.3176
MTO[5] 23.18 / 0.76 / 0.1735 22.04 / 0.70 / 0.2631 20.78 / 0.62 / 0.3408
MBLLN[3] 24.57 / 0.81 / 0.2790 22.23 / 0.69 / 0.3973 20.45 / 0.60 / 0.4844
VCNet 26.61 / 0.84 / 0.0580 25.13 / 0.79 / 0.0991 23.24 / 0.72 / 0.1716

ditions. To visualize the degree of degradation at different
illumination levels, we scaled up the pixel values of the in-
put images by a factor of 10. As shown, the input images
reveal little detail due to the challenging lighting condi-
tions. Compared with the L3F-20 and L3F-50 datasets, it is
more challenging to recover images in the L3F-100 dataset.
The single-frame-based methods produce rough predictions
with noticeable color biases. This is because these meth-



ods do not consider redundant information between views
and independently recover different views, making their fi-
nal output more susceptible to image noise. In contrast, LF-
based methods yield more appealing results by leveraging
information from multiple views inherent in LF data during
the restoration process. Compared to other techniques, our
approach achieves superior quality in terms of both com-
plex texture and color. Our results exhibit colors that closely
match the ground truth, and the edges in our results appear
more defined. More numeric results of other methods are
supplemented in Table . All these results clearly suggest
that our model is able to better interact information between
views, and effectively restore images.

2.3. Ablation Study

Table A. The ablation study of ωvc loss and VCRM block.

No. VCRM ωvc PSNR/SSIM/LPIPS

(1) w/o Disparity Constraint ε1 = 0 22.76/0.73/0.1507

(2)

with Disparity Constraint

ε1 = 0 23.59/0.75/0.1420
(3) ε1 = 0.5 23.84/0.76/0.1395

(4) ε1 = 1 23.74/0.76/0.1409

2.3.1. Disparity Constraint in VCRM

As the disparity constraint is the key idea in VCRM, the re-
lated ablation results are provided in Table. A. Compared
with model-1, model-2 using shared offsets in horizontal
and vertical EPIs outperforms nearly 1db PSNR. The shared
offset makes the model more robust and better capture re-
dundant information between views.

2.3.2. Loss Functions

We choose the weight ε1 of our lvc by conducting several
experiments. The results are provided in Table A, where the
other weights ε2,ε3 are unchanged.
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