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1. More Implementation Details

Our text-to-image generation pipeline is based on the Sta-
ble Diffusion v1.5 model [4] with ControlNet [7] for depth
conditioning. Specifically, we utilize the Depth-to-Image
model architecture that incorporates depth maps as geomet-
ric guidance during the diffusion process. For Gaussian op-
timization, each viewpoint undergoes 1000 iterations of op-
timization. During optimization, we set the distance loss
weight o to 1.5 and the scale loss weight 5 to 5. For the
Scale Loss, we set the maximum scale threshold 7 to 1e —6.
In the spatial-aware Gaussian inpainting stage, we set the
number of nearest neighbors L = 90 for color diffusion and
the radius p = 0.1 for opacity control. The base opacity
value o is set to 5 and the density threshold Py is set to
100. All experiments are conducted on NVIDIA RTX3090.
The complete pipeline for processing an object takes about
25 minutes.

Adaption of Baselines in Point-to-Gaussian Genera-
tion. We extended DreamGaussian, originally designed for
image/text-to-3D generation, to support point cloud inputs
by replacing its random Gaussian initialization with point
cloud-guided initialization. We adapt TriplaneGaussian as
our baseline by modifying its original image-conditioned
3DGS generation pipeline. Specifically, we bypass its point
cloud decoder for direct point-to-Gaussian conversion and
incorporate Stable Diffusion to enable text-to-image gener-
ation. DiffGS uses a Gaussian VAE to convert point clouds
into Gaussians by querying features from triplanes. How-
ever, its lack of text-guided appearance control limited us to
conducting only unconditional point-to-gaussian generation
experiments.
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2. Evaluation Metrics

We employ three complementary metrics to comprehen-
sively evaluate our method’s performance: Fréchet Incep-
tion Distance (FID) [6], Kernel Inception Distance (KID)
[2], and CLIP Score [3]. For each metric, we render the
generated results from fixed viewpoints at 1024 x 1024 res-
olution.

2.1. Fréchet Inception Distance (FID)

FID measures the similarity between the distribution of gen-
erated images and real images. We compute feature repre-
sentations using the InceptionV3 [5] network pretrained on
ImageNet. The FID score is calculated as:
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where (., 3, and pg, 3, are the mean and covariance
matrices of the real and generated feature distributions re-
spectively. Lower FID scores indicate better generation
quality.

2.2. Kernel Inception Distance (KID)

KID provides an unbiased estimate of the Maximum Mean
Discrepancy (MMD) between real and generated image fea-
tures. We report KID scores multiplied by 10 for better
readability. The KID metric is computed as:
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where X, and X are real and generated feature sets re-
spectively, and k(, ) is the polynomial kernel. Like FID,
lower KID scores indicate better quality.



2.3. CLIP Score

CLIP Score evaluates the semantic alignment between the
images rendered from Gaussians and the input text prompts.
We use the CLIP ViT-L/14 [3] model to compute the cosine
similarity between text and image embeddings. For each
generated result, we average the CLIP scores across all ren-
dered views. Higher CLIP scores indicate better text-image
alignment.

3. More Results

3.1. Text-Driven Appearance Generation

To demonstrate GAP’s advantage over mesh-based meth-
ods with reconstructed geometries, we provide extensive
visual comparisons in Fig. 2. We compare our results
with both traditional geometry-based reconstruction using
Ball-Pivoting Algorithm (BPA) [1] and learning-based re-
construction using CAPUDF [8]. For each reconstruc-
tion method, we generate UV maps using xatlas and apply
the same texture generation methods (Texture, Text2Tex,
Paint3D, SyncMVD) as baselines.

The visual comparison reveals two major challenges
when using reconstructed meshes. First, both BPA [1] and
CAPUDF [8] reconstructed meshes suffer from geomet-
ric ambiguities and information loss during surface recon-
struction. Second, the excessive number of faces in recon-
structed meshes leads to highly fragmented UV layouts with
severe stretching and overlapping issues, as shown in Fig. 1.
These fragmented UV charts not only limit the effective tex-
ture resolution but also cause color bleeding artifacts across
chart boundaries, resulting in discontinuities and inconsis-
tencies in the final appearance.
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Figure 1. Comparison of UV parameterization results for recon-
structed meshes using BPA and CAPUDEF. The UV layouts exhibit
severe fragmentation, stretching, and overlapping issues.

In contrast, GAP directly optimizes Gaussian primitives
in 3D space without requiring intermediate mesh recon-

struction or UV mapping. This direct optimization ap-
proach preserves geometric details from the input point
cloud while enabling high-quality appearance generation
across different object categories.

3.2. More Application Results

We further show more visualizations and comparisons of
the application shown in the main Paper. We show more
comparisons on the task of Point-to-Gaussian generation in
Fig. 3. More visualizations on the Gaussian generations un-
der real-world scanned DeepFashion3D dataset is shown in
Fig. 4. Finally, we show more comparisons on learning to
generate appearances for real-world 3D scenes in Fig. 5.
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Figure 2. Visual comparison of text-guided appearance generation results with the reconstructed meshes.
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Figure 3. Visual comparison of point-to-Gaussian generation results on ShapeNet Chair and DeepFashion3D. Our GAP method demon-
strates superior visual quality and geometric accuracy with flexible text-guided appearance control.
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Figure 4. Gaussianization results on real-world partial scans from SRB and DeepFashion3D datasets. Our surface-anchoring mechanism
and diffusion-guided rendering supervision enable GAP to generate complete, high-quality 3D Gaussian representations while maintaining
geometric consistency.
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Figure 5. Scene-level Gaussianization comparison on real-world scanned 3DScene datasets. GAP generates high-quality results for
complex scenes through a single optimization process.
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