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Supplementary Material

Overview
This supplementary material presents more details and ad-
ditional results not included in the main paper due to page
limitation. The list of items included is:
• Video demo at Project page with a brief description in

Appendix A.
• More model implementation details in Appendix B.
• More results and EHM tracking in Appendix C.
• Further discussion and ethical considerations in Ap-

pendix D.2.

A. Video Demo
We highly recommend readers watch the video demo in the
supplementary materials. The video showcases GUAVA’s
self-reenactment and cross-reenactment animation results,
as well as novel view synthesis. Additionally, we com-
pare GUAVA with both 2D-based [5, 6, 11] and 3D-based
[2, 18, 19] methods under self-reenactment. We also com-
pare it with MimicMotion [18], Champ [19], and Magic-
Pose [2] under cross-reenactment. Finally, we present the
visual results of ablation studies. These results demonstrate
that our method enables more detailed and expressive facial
and hand motion while maintaining ID consistency with the
source image across various poses.

B. More Implementation Details
B.1. Training details
We train the model for a total of 200,000 iterations with
a fixed learning rate of 1e-4. The learning rate for certain
MLPs gradually decreases linearly to 1e-5 over the training
process, while the weights of DINOv2 [12] remain frozen.
Initially, we set the LPIPS [17] loss weight λlpips to 0.025
and increase it to 0.05 after 10,000 iterations. Other loss
weights are set as follows: λf = 0.25, λh = 0.1, λ1 = 1.0,
λp = 0.01, λs = 1.0. The hyperparameters ϵpos, ϵsca are
set to 3.0 and 0.6, respectively.

B.2. Model details
In the reconstruction model, the appearance feature map
Fa output by the image encoder is passed through convo-
lutional layers to transform its dimensions to 32 and 128,
which are then used for the UV Gaussians prediction and
template Gaussians prediction branches, respectively.

In the UV branch, the appearance feature map is con-
catenated with the original image, and inverse texture map-
ping is applied to map the features to the UV space, re-
sulting in Fuv ∈ RH×W×35. This is passed into the UV

decoder’s StyleUnet, which outputs a 96-dimensional fea-
ture map. The feature map is then further processed by a
convolutional module to decode the Gaussian attributes for
each pixel. Additionally, the ID embedding fid is injected
into StyleUnet via an MLP.

In the template Gaussian prediction branch, the projec-
tion feature fp and the base vertex feature fb are both set to
a dimension of 128. The ID embedding fid is mapped to
256 dimensions via an MLP.

For Gaussian representation, we discard the spherical
harmonic coefficients and use a latent feature c with a di-
mension of 32 to model the Gaussian appearance. Through
splatting, we obtain a rough feature map with a dimension
of 32. To help the refiner decode finer images from the
rough feature map, we use a loss function to ensure that
the first three channels of the latent feature represent RGB.
Some details of the model are not shown in Fig. 2 of the
main paper, for clarity.

B.3. Evaluation details
For self-reenactment evaluation, MagicPose struggles with
synthesizing black backgrounds. To avoid the background
color influencing the evaluation metrics, we use the ground
truth mask to remove the background. Similarly, for
Champ, since it uses SMPL-rendered maps [9] (e.g., nor-
mal and depth) as input, the generated images may include
legs. To ensure accurate metric calculations, we also apply
the ground truth mask to filter out the irrelevant parts.

B.4. Inverse texture mapping
Here, we explain inverse texture mapping with added de-
tails for clarity and ease of understanding. Given the tracked
mesh and its corresponding information, including the ver-
tices of each triangle and the three UV coordinates for each
triangle, we can locate the area covered by each triangle on
the UV map. Then, we identify which triangle each pixel
belongs to and calculate its barycentric coordinates. For
each pixel, we use its barycentric coordinates to interpolate
the triangle vertices and calculate the corresponding posi-
tion t on the mesh. Next, we project each pixel onto screen
space based on its position t:

xjuv = P(tj , RTs), j ∈ [0, H ·W ], (1)

whereRTs is the viewing matrix of the source image and P
denotes projection. Finally, we perform linear sampling on
the appearance feature map, reshape it to H ×W × 35, and
obtain Fuv , completing the inverse texture mapping of the
appearance feature map to UV space. To filter out features
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Figure S1. Visual results on novel view synthesis. Our method effectively generates reasonable 3D information while ensuring strong
multi-view consistency and preserving the details of the source image.

from invisible regions, we use the Pytorch3D rasterizer to
render the tracked mesh and acquire the visible triangles.
For pixels corresponding to invisible triangles, their features
are set to 0.

B.5. EHM tracking
In the main paper Sec. 3.1, we briefly introduce the track-
ing of the template model’s parameters using keypoint loss,
omitting some details for clarity. However, the actual pro-
cess is more complex. Here, we provide a more detailed
description of our tracking method. Given images of a hu-
man’s upper body, we first estimate the keypoints Kb using
DWPose [16]. Based on these detected keypoints, we crop
the head and hand regions. During the cropping process,
we also record the affine transformation matrices Af and
Ah. For the cropped hand image, we use HaMeR [14] to
estimate the parameters Zh = (βh, θh) for both hands. For
the upper body, we estimate the SMPLX [13] parameters
Zb = (βb, θb) using PIXIE [4].
Face Tracking. Based on the cropped head image, we

estimate three sets of keypoints K1
f , K2

f and K3
f using

FaceAlignment [1], MediaPipe [10], InsightFace [3], where
we only use the mouth keypoints from K3

f . We also per-
form a rough estimation of the FLAME [7] parameters
Zf = (βf , ψf , θf ) using Teaser [8], where θf includes the
jaw pose θjaw, eye pose θeye, neck pose θneck and a global
pose θfg . Then, we optimize the rotation R and translation
T of the camera parameters, as well as Zf , for 1000 itera-
tions, with the loss function defined as follows:

Lface−track =

3∑
i

λfk,iL1(K
i
f , K̂

i
f )+

λfsmoLsmo(Zf , R, T ) + λfregLreg(Zf ).

(2)

Here, Lsmo and Lreg represent the smoothness loss be-
tween adjacent frames and the regularization loss (con-
straining parameters toward zero), respectively. Next, we
optimize the eye pose θeye for 500 iterations using keypoint
loss and smoothness loss, focusing on the eye keypoints.

Additionally, since the FLAME model does not include
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yaw=36.3° yaw=80.5° yaw=-48.0° yaw=-135.6°

Figure S2. Visual results on extrapolated novel view synthesis. Renderings of back-facing regions are slightly lower quality due to the lack
of backside data in our training set.

source image target motionreconstruction animation

Figure S3. Full-Body reconstruction results. Our method successfully performs full-body reconstruction. Acquiring additional full-body
data is expected to improve the results in such cases.

a mouth interior mesh, we follow [15] to incorporate teeth
into FLAME. The upper and lower teeth meshes are initial-
ized accordingly, with their poses driven by the neck and
jaw joints, respectively.

Body Tracking. After head tracking, we replace the head
part of SMPLX with the neutral-pose expressive FLAME
model Mf (βf , ψf , θjaw, θeye) (with zero global and neck
pose) to obtain EHM, as described in main paper Eq. 1.
We then optimize the body parameters using not only 2D
keypoint loss but also a 3D guidance loss from the tracked
FLAME model Mf (Zf ) and the tracked MANO model
Mh(Zh). Since these tracked models align with their re-
spective cropped image regions, they serve as accurate guid-
ance. By applying the recorded affine transformation, we
convert their vertices form local to global space and com-
pute the error between EHM’s head and hand vertices and
these references, enhancing pose optimization and align-
ment accuracy. The following loss function is used to opti-
mize Zb, βf , θh as well as camera parameters R and T :

Lbody−track = λbkL1(Kb, K̂b) + λbregLreg+

λbsmoLsmo(Zb, θh, R, T )(Zb, θh)+

λb3dL3d(Mehm, A
−1
f Mf (Zf ), A

−1
h Mh(Zh))+

λbpriorLprior(Zb),

(3)

where, Lprior represents the constraint loss applied to
the pose parameters using VPoser [13], enforcing a prior
distribution.

C. More Results
C.1. Novel views synthesis
Reconstructing a 3D upper-body avatar from a single im-
age is an ill-posed problem. However, GUAVA learns the
animation of diverse subjects from different viewpoints, en-
abling it to generalize and infer certain 3D information.
As a result, the reconstructed avatar not only supports an-
imation but also enables novel view synthesis. Fig. S1
presents our results, demonstrating high multi-view consis-
tency while preserving the subject’s identity. Additionally,
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Figure S4. Visualization of failure cases. Our method exhibits limitations when handling fluffy hair, loose clothing, and flowing folds.
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Figure S5. Visual results of our EHM tracking method. Without EHM, the model can only capture basic mouth-opening and -closing
movements, whereas our method accurately tracks subtle facial expressions. Additionally, our approach successfully captures complex and
detailed hand gestures.

synthesized novel views exhibit high-quality rendering with
fine texture details.

We also demonstrate novel view synthesis from extreme
angles, as shown in Fig. S2. Since our training dataset
includes only front views, back rendering is suboptimal.
Training on 360° datasets, as IDOL [20] could help.

C.2. Full-body
Our method is also applicable to full-body settings as
Fig. S3. However, due to few full-body data in our dataset,
adding more data could improve generalization.

C.3. Failure cases
As shown in Fig. S4, our method has limitations with fluffy
hair, loose clothing, and flowing folds — all calling for fu-
ture improvements.

C.4. EHM tracking results
Although we have demonstrated the improvement in model
performance with the EHM model from both qualitative and

quantitative perspectives in the main paper Sec. 4.3, to pro-
vide a more intuitive comparison, we further present the vi-
sual tracking results in Fig. S5. It is important to note that
”w/o EHM” refers to tracking with SMPLX, which still uses
our designed tracking framework, but without the FLAME
integration step. From the results, it is clear that SMPLX
can only roughly capture mouth movements, while EHM
captures detailed facial expressions. Furthermore, our de-
signed tracking framework not only captures accurate facial
expressions but also tracks fine gestures, including finger
movements, with high precision.

D. More discussion
D.1. EHM vs SMPLX
As discussed in the main paper Sec. 2.1, although SM-
PLX [13] integrates SMPL [9] and FLAME [7], its expres-
sion space is newly trained on full-body scans, which may
overlook fine facial details. This results in SMPLX having
less expressive facial expressiveness compared to FLAME,
a limitation also noted in ExAvatar (Sec. 3.1) [11]. EHM’s



main contribution is to improve this facial expressiveness.

D.2. Ethical considerations
The generalization of 3D human avatar reconstruction tech-
nology raises several potential ethical concerns. First, unau-
thorized data collection and processing could lead to pri-
vacy violations, particularly with sensitive personal infor-
mation like facial features and body shape. Second, this
technology could be misused to create deepfake content,
leading to identity theft, fraud, and other illegal activities.
Additionally, the rapid reconstruction and real-time anima-
tion could be exploited to spread misinformation or engage
in online harassment. Therefore, strict adherence to data
protection regulations, ensuring informed consent, and tak-
ing measures to prevent misuse are essential. Transparency
and traceability of technology should also be prioritized to
build public trust and minimize potential risks.
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