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Generalization-Preserved Learning: Closing the Backdoor to Catastrophic
Forgetting in Continual Deepfake Detection

Supplementary Material

Figure 1. We propose to simulate the physics-based exposure pro-
cess using a shared neural network FΘ in a progressive manner.

A. Architecture of the Watermark Generator001

The architecture of the watermark generator is designed as a002
lightweight convolutional network to efficiently adapt incre-003
mental data without modifying the backbone network. As004
shown in Fig. 1, the generator consists of multiple convolu-005
tional layers with progressively reduced spatial resolution.006
It begins with an input resolution of 299 × 299 and under-007
goes sequential downsampling through three 3 × 3 convo-008
lutional layers, each followed by a 2 × 2 max pooling op-009
eration. The feature maps increase in channel depth from 3010
to 8, 16, and finally 32, allowing the generator to extract hi-011
erarchical representations of the input image. The final out-012
put is a three-channel residual mask of size 37× 37, which013
is applied to the input image to generate the watermarked014
version. This lightweight design ensures minimal computa-015
tional overhead while effectively aligning incremental data016
distributions.017

B. Algorithm for Generalization-Preserved018

Learning019

As shown in Algorithm 1, we provide a concisely sum-020
marized algorithm for better comprehension in the detailed021
implementation of the proposed Generalization-Preserved022
Learning.023

C. Calculation of the Loss Landscape024

To analyze the loss landscape, a reference parameter point025
θ∗ is first determined, typically corresponding to the op-026
timal parameters obtained after training a neural network027
to convergence. Next, two independent direction vectors, δ028
and η, are selected, usually sampled randomly from a Gaus-029
sian distribution to ensure randomness. However, due to the030
differences in parameter scales may lead to visualizations031
of the loss landscape that are not directly comparable. To032

Algorithm 1 Generalization-Preserved Learning

Require: Feature extractor F(x, θf ), classifier C(x, θc),
base watermark generator G(x, θ1,learng ), dataset se-
quence S = {D1, ..., DK}, clusters Creal, Cfake

Ensure: Optimized watermark generator G(x, θK,learn
g )

1: for t = 2, ...,K do
2: Initialize θt,fixg , θt,learng ← θt−1,learn

g

3: for mini-batch (x, y) ∈ Dt do
4: Generate feature:

xw,fix = x+ λgG(x, θt,fixg )

xw,learn = x+ λgG(x, θt,learng )

zlearn = F(xw,learn, θf )
5: Compute total loss:

πfix = Softmax(C(F(xw,fix, θf ), θc))
πlearn = Softmax(C(F(xw,learn, θf ), θc))

Lcls = −
∑N

i=1

[
yi log π

learn
i + (1− yi) log(1− πlearn

i )
]

Lnce = − log
exp(−dH(z

learn,Cy)/τ)∑
Cj∈{Cy,C¬y} exp(−dH(zlearn,Cj)/τ)

Ltotal = Lcls + λnceLnce
6: Adjust gradient

LKL =
∑

j π
fix(yj |x) log πlearn(yj |x)

πfix(yj |x)
Gtask = ∇θt,learn

g
Ltotal

Gbase = ∇θt,learn
g

LKL

Galign = Gtask − λkl
Gtask·Gbase

∥Gbase∥2 Gbase

7: Update watermark generator:
θt,learng = θt,learng − ηGalign

8: end for
9: end for

10: return trained watermark generator G(x, θK,learn
g )

address this issue and enhance comparability across differ- 033
ent network architectures or optimization methods, a ”filter 034
normalization” strategy can be employed. This technique 035
normalizes each direction vector at the filter level so that its 036
scale matches that of the original weights, thereby eliminat- 037
ing the impact of parameter scale variations. Specifically, 038
for a neural network with parameters θ, a random direction 039
vector d is first generated with dimensions identical to θ. 040
Then, each filter in d is normalized to have the same norm 041
as the corresponding filter in θ, as given by: 042

di,j ← di,j
∥θi,j∥
∥di,j∥

, 043

where di,j represents the jth filter of the ith layer in d, and 044
∥ · ∥ denotes the Frobenius norm. The normalized direc- 045
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tion vectors are subsequently used for parameter transfor-046
mations to construct a two-dimensional parameter space for047
loss landscape evaluation. In the computation of the loss048
landscape, let α and β be two control variables. The trans-049
formation in the parameter space is defined as:050

θ(α, β) = θ∗ + αδ + βη,051

where α and β vary within a certain range, forming a set052
of sampled points in a two-dimensional plane. For each053
transformed parameter θ(α, β), the corresponding value of054
the loss function is calculated as:055

L(α, β) = L(θ(α, β)).056

By computing the loss matrix with different values of α057
and β, the loss landscape can ultimately be visualized us-058
ing three-dimensional surface plots. In our case, α and β059
represent the x and y axes, while L(α, β) represents the z060
axis. This method provides an intuitive representation of061
the geometric properties of different network architectures062
or optimization methods in the parameter space, which is063
frequently used to explore the generalizability of models.064
Experiments have shown that flat surface generally corre-065
sponds to better generalization performance, while sharp066
surface may imply that the model overfits the training data.067

D. Learnable Watermark Embedding for In-068

cremental Alignment069

To effectively address catastrophic forgetting in continual070
deepfake detection, we introduce a learnable watermark071
generator G that embeds structured perturbations into incre-072
mental data, aligning them with the base set’s distribution073
in hyperbolic space. The watermarking process consists of074
two key components:075

1. Global Watermark for Cross-Task Alignment: A076
shared watermark is optimized across all incremental077
tasks to ensure that new samples maintain distributional078
consistency with base set forgery patterns. This global079
watermark enforces feature alignment across different080
incremental datasets, reducing task recency bias and sta-081
bilizing long-term feature representations.082

2. Special Watermark for Sample-Specific Adaptation:083
In addition to the global watermark, a task-specific wa-084
termark is dynamically generated per sample, introduc-085
ing fine-grained perturbations that adapt to individual086
forgery instances while preserving the underlying deci-087
sion boundary.088

Process Overview:089
• The backbone network F first extracts feature embed-090

dings from raw images.091
• The attention-guided watermark mask selectively en-092

hances forgery-relevant regions by computing a task-093
aware attention map.094

Figure 2. Grad-CAM Visualization on FF++ Dataset

Figure 3. Grad-CAM Visualization on DFDCP Dataset

Figure 4. Grad-CAM Visualization on DFD Dataset

• The watermark generator G applies a mixture of global 095
and special perturbations to incrementally align new 096
forgery distributions with the base set’s hyperbolic space. 097

• The refined images are reprocessed through the network 098
to ensure feature consistency across tasks, minimizing 099
distributional drift. 100

By integrating both global and special watermark- 101
ing strategies, our method effectively projects new forgery 102
samples onto the learned hyperbolic manifold of past tasks. 103
This prevents overfitting to recent forgeries, while ensuring 104
the model retains generalizable knowledge of prior deep- 105
fake patterns. 106

E. Visualization of Model Attention via Grad- 107

CAM. 108

We utilize Grad-CAM to visualize the attention regions of 109
the backbone network, comparing the feature focus of DFIL 110
and our method. The results are shown in Fig. 2, 3, 4, 111
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Figure 5. Grad-CAM Visualization on CDF Dataset

and 5 indicate that DFIL exhibits a more dispersed atten-112
tion distribution, easily prioritizing background regions. In113
contrast, our method focuses more on key forgery-related114
details in facial areas, such as the eyes, nose, and mouth,115
demonstrating a more stable and localized attention distri-116
bution for forgery detection.117

F. Convergence Proof118

In this section, we provide a convergence analysis for our119
proposed training scheme under standard assumptions. We120
specifically analyze the convergence behavior of the wa-121
termark generator parameter updates using the Generalized122
Gradient Projection strategy, combined with the alternating123
training strategy.124

F.1. Assumptions125

We make the following standard assumptions for the con-126
vergence analysis:127

1. Smoothness: The total loss function128

Ltotal(θg) = Lcls(θg) + λnceLnce(θg),129

is continuously differentiable with an L-Lipschitz con-130
tinuous gradient:131

∥∇Ltotal(θ1)−∇Ltotal(θ2)∥ ≤ L∥θ1 − θ2∥, ∀ θ1, θ2.132

2. Boundedness: The loss function Ltotal is bounded from133
below by a finite value.134

3. Learning Rate: The learning rate η satisfies 0 < η < 1
L ,135

ensuring stable gradient descent steps.136
4. Non-expansiveness of Projection: The projection op-137

eration defined in the Generalized Gradient Projection138
strategy does not increase the norm of the gradient:139

∥Galign∥ ≤ ∥Gtask∥.140

F.2. Update Rule and Gradient Projection 141

At incremental task t, the watermark generator parameters 142
θt,learng are updated via: 143

Gtask = ∇θgLtotal(θg), (1) 144

Gbase = ∇θgLKL(θg), (2) 145

Galign = Gtask − λg
⟨Gtask, Gbase⟩
∥Gbase∥2

Gbase (3) 146

leading to the parameter update: 147

θ(t+1)
g = θ(t)g − ηGalign, 148

where η is the learning rate and λg controls the projection 149
strength. 150

F.3. Convergence Analysis 151

Under the smoothness assumption, using the Descent 152
Lemma, we have: 153

Ltotal(θ
(t+1)
g ) ≤ Ltotal(θ

(t)
g ) + ⟨∇Ltotal(θ

(t)
g ),−ηGalign⟩ 154

+
Lη2

2
∥Galign∥2. (4) 155

Considering the non-expansiveness assumption, we 156
have: 157

∥Galign∥ ≤ ∥Gtask∥ = ∥∇Ltotal(θ
(t)
g )∥, 158

Choosing the learning rate sufficiently small, e.g., η ≤ 1
L , 159

ensures a monotonically decreasing loss sequence: 160

Ltotal(θ
(t+1)
g ) ≤ Ltotal(θ

(t)
g )− η

2
∥∇Ltotal(θ

(t)
g )∥2, 161

indicating that each update step guarantees descent in the 162
loss. 163

F.4. Block Coordinate Descent and Convergence 164

Our training scheme employs an alternating (block coordi- 165
nate descent) optimization strategy: the watermark gener- 166
ator and backbone network parameters are updated in an 167
alternating fashion. Given the non-convexity of the neural 168
network objective, convergence is understood in the sense 169
of convergence to a stationary point (local minimum or sad- 170
dle point). 171

Block coordinate descent (BCD) algorithms with Lips- 172
chitz continuous gradients ensure convergence to stationary 173
points under standard non-convex optimization conditions 174
Specifically, by fixing the backbone and classifier param- 175
eters, the incremental learning phase reduces to optimiza- 176
tion with respect to a single parameter block (the watermark 177
generator). Thus, standard convergence results for single- 178
block optimization apply directly. 179

As a result, our alternating training strategy (BCD be- 180
tween backbone/classifier and watermark generator) com- 181
bined with the gradient projection mechanism ensures that 182
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each incremental update provides a monotonically decreas-183
ing loss sequence, ultimately converging to a stationary184
point. Formally, as t→∞, we obtain:185

lim
t→∞

∥∇Ltotal(θ
(t)
g )∥ = 0,186

which guarantees convergence to a stationary point.187

F.5. Conclusion188

Given the standard non-convex nature of deep neural net-189
work optimization, the proposed Generalized Gradient Pro-190
jection combined with alternating block coordinate training191
guarantees convergence to a stationary point (local mini-192
mum or saddle point). This theoretical analysis supports the193
stability and effectiveness of our proposed GPL framework194
for incremental deepfake detection tasks.195

G. Comparison of Training a New Model with196

Few Data197

G.1. Experimental Setup198

To further evaluate the effectiveness of our proposed199
method, we conduct a comparative experiment involving200
the following two approaches:201

1. Training a new model from scratch, using only a lim-202
ited number of new forgery samples.203

2. Using our incremental learning method, where the204
model learns new forgery techniques while retaining knowl-205
edge from previous tasks.206

We follow the experimental setup of DFIL, selecting a207
small number of samples from FF++, DFDCP, DFD, and208
CDF datasets. The newly trained model is trained only209
on these limited samples, whereas our incremental learn-210
ing method continuously learns new data while preserving211
prior knowledge(FF++).212

G.2. Results and Analysis213

Table 1. Comparison of training a new model vs. using our incre-
mental learning method.

Method FF++ (%) DFDCP (%) DFD (%) CDF (%) Avg (%)

Train from scratch - 82.44 95.05 74.63 84.04
DFIL - 88.87 96.92 84.68 90.16
Ours - 89.85 94.32 93.29 92.49

Tab. 1 compares the performance of continual deepfake214
detection under limited data conditions, focusing on the tra-215
ditional Train from Scratch approach, DFIL, and our pro-216
posed Generalization-Preserved Learning (GPL) method.217

For the first row (Train from Scratch), the model is218
trained and tested using the full training set of three datasets219
without applying incremental learning. For the second and220
third rows (incremental learning methods), the model is first221

pre-trained on the FF++ dataset. Then, DFDCP, DFD, and 222
CDF are sequentially introduced as incremental training 223
datasets, where only 25 fake and 25 real videos are selected 224
from each dataset to evaluate the generalization ability of 225
different methods in a low-sample incremental learning sce- 226
nario. The results demonstrate that our method achieves 227
the best performance across all datasets, with an average 228
classification accuracy (Avg.) of 92.49%, outperforming 229
DFIL by 2.33% and Train from Scratch by 8.45%, validat- 230
ing GPL’s effectiveness in incremental learning under lim- 231
ited data conditions. 232

On the DFDCP dataset, our method achieves 89.85% de- 233
tection accuracy, surpassing DFIL by 1.98% and Train from 234
Scratch by 7.41%, demonstrating that GPL maintains strong 235
forgery detection capability even in a low-sample setting. 236
On the CDF dataset, our method achieves 93.29% detec- 237
tion accuracy, significantly outperforming DFIL (+8.61%) 238
and Train from Scratch (+18.66%). This result suggests 239
that GPL can better adapt to distribution shifts introduced 240
by different forgery techniques, enhancing feature stabil- 241
ity during incremental learning. On the DFD dataset, al- 242
though our method is slightly lower than DFIL (-2.6%), it 243
still maintains high detection performance and achieves the 244
best overall average accuracy. 245

These experimental results not only demonstrate the ef- 246
fectiveness of continual deepfake learning, where incre- 247
mental learning can yield better results than training on full 248
data from the current task alone, but also further confirm 249
that GPL effectively regulates the incremental data feature 250
space through watermark perturbations and hyperbolic vi- 251
sual alignment. This enhances the model’s generalization 252
ability while better retaining detection capability for histor- 253
ical tasks, ensuring stability and robustness throughout the 254
incremental learning process. 255

H. Ablation Study on λnce 256

To analyze the effect of the hyperparameter λnce, which bal- 257
ances the classification loss and the contrastive loss, we con- 258
duct an ablation study by varying λnce while keeping other 259
settings fixed. The total loss function is: 260

Ltotal = Lcls + λnceLnce, (5) 261

where Lcls is the classification loss and Lnce is the con- 262
trastive learning loss in the hyperbolic space. We evaluate 263
the performance using different values of λnce and report 264
the classification accuracy in Tab. 2 presents the accuracy 265
across different values of λnce. The results indicate that the 266
performance is optimized when λnce is set to an appropriate 267
value, balancing the influence of contrastive learning and 268
classification loss. 269

The results show that overly small or large values of λnce 270
lead to suboptimal performance. A moderate value, such 271
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Table 2. Ablation study on the effect of λnce in the loss function.

λnce AA (%) ↑ AF (%) ↓

0.01 79.92 3.48
0.05 88.11 5.29
0.1 92.14 1.42
0.2 90.72 3.68
0.3 85.49 2.21
0.5 88.01 3.43
0.8 67.83 10.23
1.0 66.48 11.52

as λnce = 0.1, achieves the best trade-off between classi-272
fication accuracy and contrastive learning, improving the273
model’s ability to distinguish real and fake samples effec-274
tively.275

H.1. Training Overhead276

During incremental training, only the watermark genera-277
tor (G) is optimized, while the backbone (F + C) remains278
frozen, significantly reducing training costs. To quantify279
this efficiency, we analyze the parameter count of both the280
watermark generator and the backbone, as shown in Tab.281
3. The watermark generator accounts for only 1.06% of the282
total parameters, whereas the backbone comprises 98.94%.283

Table 3. Comparison of parameter counts between the watermark
generator and backbone

Module Parameter Count Proportion (%)

Watermark Generator (G) 0.22M 1.06 %
Backbone (F + C) 20.8M 98.94 %

This indicates that our method requires updating only284
a minimal fraction of the parameters during incremental285
training, enabling efficient adaptation to new forgery dis-286
tributions while maintaining computational efficiency. By287
minimizing the number of trainable parameters, our ap-288
proach reduces training overhead, making continual learn-289
ing more efficient and resource-friendly.290
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