Geometry Distributions

Supplementary Material

Archimedes

Figure 16. The ground-truth geometries for the shapes shown in Fig. 1.

A. Additional results

Fig. 17 extends Fig. 3, demonstrating that our approach
generates more uniformly distributed samples with higher
fidelity across different resolutions, compared to the vec-
tor field-based method. Fig. 19 (an extension of Tab. 2c),
and Fig. 18 (an extension of Fig. 14), provide error
visualization of L, distance to surface, demonstrating
how the sampling steps affect the forward sampling and
inverse sampling, respectively, for geometry recovery.
In Fig. 20 and Fig. 21, we show additional results of
using our method to represent textured geometry and
high-resolution scene. In Fig. 26 we show additional re-
sults to justify the inversion process discussed in Sec. 3.2
and Sec. 4.4: we composite inverse sampling and forward
sampling from different surfaces, yet still obtain expected
results. Specifically, the composed sampling process al-
lows us to transform the WuKong shape into a jellyfish,
lamp, sphere, or a plane. In Tab. A.1 we report the mesh
complexity of the experimented shapes.

B. Implementation details

B.1. Mesh normalization

We normalize all the meshes using the following pseudo-
code. First, we sample 10 million points on the surface.
Next, we shift and scale the mesh based on the mean and
standard deviation of the sampled points. As a result,
the surface points are approximately centered around zero
with unit variance. We found that this normalization is

mesh stats
name
vix # face disk storage
(K) (K) (Mb)
WuKong 19226 6408 878
Archimedes 6162 2054 276
loong 3956 1318 176
Jellyfish 3908 1302 178
mouse 793 1423 58
archer 710 1420 58
lamp 478 159 21
warrior 433 866 35
lion 303 606 24
Jacket 146 49 11
city 249 83 11
Parthenon 117 39 5
valley 74 37 6
Spot 32 5.8 0.37
table 0.82 0.73 0.07

Table A.1. We report the mesh complexity and storage cost for
the experimented shapes. Unless explicitly mentioned in the ta-
ble, the shapes can be found in Fig. 16.

effective in stabilizing the training process.

points, _ = trimesh.sample.sample_surface (mesh,
10000000)
2> mesh.vertices -= points.mean/()

3 mesh.vertices /= points.std()

vector
fields

ours

Figure 17. Extension of Fig. 3: when compared to the vector
fields-based method (top), our GEOMDIST (bottom) produces
more uniformly distributed samples with higher fidelity.

N =16 N = 64

Figure 18. Top: the recovered shape from inversion £ o D(x) us-
ing different number of inverse sampling steps as in Eq. (4). Bot-
tom: per-sample inversion error (colored on the original shape)
and the average error € (L2 distance to the surface).

N=38 N =64 ground-truth

757 AN
0.05 3 : Y
3 , / "/‘;
\ -
1 S e

) e

Figure 19. Errors (L2 distance to the surface) of 1 million points
using different sampling steps IV (see Eq. (3)). Left: N = 8.
Middle: N = 64. Right: ground-truth mesh. Per-point errors
(colored by Lo distance to the ground-truth surface) are visual-
ized. Results for N = 16, 32 are omitted, as they are nearly
identical (see Tab. 2c¢).

Figure 20. Applications on textured geometries. The setup is
the same with Fig. 10. We show 1 million sampled points. Top:
ground-truth. Bottom: ours.

Figure 21. Results on city. Top: ground-truth. Bottom: ours.

B.2. Uniform distribution

When using uniform distribution as the initial noise in dif-
fusion models (e.g., see Fig. 5), we scale the samples from
uniform distribution to have zero mean and unit variance.

n = (torch.rand_like(x) - 0.5) / np.sqrt(1/12)

B.3. Chamfer distance

We use Chamfer distance to measure the distance between
samples from our Geometry distribution, Xgeq, and the
samples from ground-truth surface, X.¢, to quantify the
accuracy. This is defined as:

min |la —bl|, +

. 1
ChamferDist(Xrer, Xgen) :m g i
TC gen
f

ac Xy

1
EmipD

b€ Xyen

in [la—Dbl|l,.
J?éélf” 5

The python code for calculating the Chamfer distance is
as follows:

prediction: B x 3

reference: B x 3

3 from scipy.spatial import cKDTree as KDTree

1

wd2:
3 gen_to_gt_chamfer = np.mean(dist)

tree = KDTree (prediction)

dist, _ = tree.query(reference)

ekl = Glizie

gt_to_gen_chamfer = np.mean(dist)
gt_to_gen_chamfer_sg = np.mean (np.square (dist))

tree = KDTree (reference)
dist, = tree.query (prediction)

dist
gen_to_gt_chamfer_ sqg = np.mean(np.square (dist))

cd = gt_to_gen_chamfer + gen_to_gt_chamfer

B.4. Sampling algorithm

We show the sampling algorithm (Algorithm 2) proposed
in EDM [22] for completeness.

Algorithm 2 Sampling
1: procedure SAMPLING(X, tic(o,... N})
2 xg = ton where n ~ N'(0,1)
3 forie {0,1,...,N —1} do
4: di = (Xi — Dg(Xi,ti)) /ti
5: Xit1 = Xi + (tiv1 — ;) - d;
6 end for
7: end procedure

B.5. Networks

The forward passes of the middle blocks and final block
(illustrated in Fig. 7) are implemented as follows:

x:
ot

1B % €
B x C

3 # middle block

n

XX Q = s

#
P
3 Vv,
d

= emb_mp_linear (t, + 1
X = normalize (x)

= x_pre_mp_linear (mp_silu(x))

= mp_silu(res » c.to(y.dtype))

res = x_post_mp_linear (res)

X = mp_sum(x, res, t=0.3)

gain=emb_gain)

R8 1B ®r C

g 18 % C

final block

= emb_mp_linear(t, gain=final_emb_gain)
= x_pre_mp_linear (mp_silu (normalize (x)))
= mp_silu(x * c.to(y.dtype))

out = x_post_mp_linear(x, gain=final out_gain)

+ A

B.6. Vector fields

The vector fields are coordinate-based networks which
outputs vectors pointing towards to the surface. We use
Libigl library [20] to process the data.

28 1B 3
= np.random.randn (B, 3)
f = igl.read_triangle_mesh (obj_path)
;, _, ¢ = igl.point_mesh_squared_distance(p, v,
f)
unsigned_distances = np.sqrt (d)
vectors = c - p # B x 3

B

B.7. Meshing with Blender

We utilize the Geometry Nodes from the software Blender
as an alternative way to meshing (see Fig. 2). The setup
can be found in Fig. 22. Note that we use the same pa-
rameters for all the objects. The meshing results can be
further improved for different objects.

B.8. Color fields

We use the hashing grids proposed by Instant-NGP to im-
plement the color field network in Fig. 1 1. The implemen-
tation is from the official github repository.

encoder_config = """{
"otype": "HashGrid",
"n_levels": 16,
"n_features_per_level": 2,
"log2_hashmap_size": 19,
"base_resolution": 16,

L

network_config = """{

"otype": "FullyFusedMLP",
"activation": "ReLU",
Yeislicieitic_aeltihveiciemt 8 WEileealel™
"n_neurons": 64,

"n_hidden_layers": 2

LI

class ColorField(nn.Module) :
def _ _init_ (self):
super () ._ _init_ ()

Vv Group Input

/O

Geometry @ ®

self.encoding = tcnn.Encoding(

v Vol to Mesh
v Points to Volume OUME foMES

Volume @
Amount v \

0.030

. Resolution Grid
Resolution

® Volume Vv Group Output

Points

o Threshold

Density ® Geometry

Voxel Amo... 1024.000 ® Adaptivity

Radius 0.02 m

Figure 22. Meshing with Blender’s Geometry Nodes

Network blocks 2 4 6 8 10

n_input_dims=3, encoding_config=json.loads (
encoder_config))

self.network = tcnn.Network (
n_input_dims=self.encoding.n_output_dims,
n_output_dims=3, network_config=json.loads (
network_config))

def forward(self, x):
x = self.encoding (x)
x = self.network (x)
EEEbEn X

We optimize L;-loss between the predicted and ground-
truth colors. The training takes around 3 minutes. When
the training is done, we can query colors for all spatial
points,

ColorField(x) = c. (B.1)

The colors in Fig. 11 are obtained by ColorField(€(n))
where n ~ N(0,1).

B.9. Compression rate

Using geometry distributions to represent 3D surfaces of-
fers several advantages. For example, at a given budgeted
resolution, this representation provides natural sampling
without computational overhead. Any number of surface
points can be sampled directly from the geometry dis-
tribution to approximate the surface (see Fig. 6 for one
example). As a result, it is no longer necessary to store
extremely high-resolution point clouds to capture details.
Instead, we can store the trained network, which theoreti-
cally retains all the information needed to recover the ge-
ometry, and sample surface points at the desired resolution
for each use case. In Tab. B.2 we quantify the compres-
sion rate.

C. Discussions

C.1. Comparison with UDFs

While UDFs (unsigned distance fields) can model open
surfaces and are of academic interest, they remain niche

Parameters (x10°) 238 396 553 711 8.68
Comp. ratio on 106 points 1261 0.758 0.542 0.422 0.346
Comp. ratio on 10° points 1261 758 542 422 346

Table B.2. Application: geometry compression. We calculate
the compression ratio on different numbers of sampled points (3
floats per point), assuming a network parameter is represented
with one float. The chamfer distance to the ground-truth mesh is
as in Tab. 2d. Since this method can represent an infinite number
of points, the storage requirements remain constant regardless
of the number of points. As a result, when representing a large
number of points, the compression rate becomes more signifi-
cant.

and non-competitive in practice due to three key limita-

tions:

1. UDFs are inherently non-smooth (i.e. non-
differentiable) at the zero-level set. See Fig. 23
left for a visualization of this issue. We hypothesize
that neural networks are biased toward learning
smooth functions, making non-smooth functions
significantly harder to optimize.

2. UDFs exhibit gradient ambiguities at some points. The
Marching Cubes algorithm for UDF meshing requires
differentiation during inference, but these gradient am-
biguities make the directional vectors used in the mesh-
ing algorithm ill-defined, preventing accurate conver-

surface (zero level set) surface
non-differentiable

gradient

» query point

distance

‘gradient
spatial

)
I
U
: gradient ambiguities

Figure 23. UDFs are non-differentiable at zero-level sets (left).
The gradients are ill-defined at some points (right).

UDF 1/128 UDF 1/256 UDF 1/512

’!'*.7:‘;" | | s L B)

Figure 24. We compare our results with UDFs. The meshing
outputs from UDFs are obtained using different e-isosurfaces
(1/128, 1/256, 1/512). While smaller € are theoretically prefer-
able, setting ¢ = 1/512 introduces numerous holes in the mesh.
Larger € values (1/128, 1/256) also fail to achieve smooth sur-

faces, unlike our method, which delivers high-quality geometry.

J dvery

input —> encoder —> latents —> decoder > MLP —> output

3 avery
input —> encoder = latents —> decoder = ours —> output
? noise level

Figure 25. Template network design: MLP (fop) vs. ours (bot-
tom).

gence towards the ground-truth surface (see Fig. 23,
right).

3. UDFs demonstrate inferior empirical performance. We
validate this by training a UDF with InstantNGP and
extracting meshes using DISO'. Even with this opti-
mized pipeline, UDFs underperform compared to our
method (see Fig. 24).

C.2. Generalizable case

Our method naturally extends to dataset encoding. Dur-
ing training, our network incorporates an additional
noise-level parameter compared to conventional MLPs.
See Fig. 25 for a template network design. During infer-
ence, the reconstruction process follows an iterative pro-
cedure akin to conditional diffusion.

Uhttps://github.com/SarahWeiii/diso

Do!

Figure 26. We denote the trained diffusion networks that map from a Gaussian distribution to the Wukong, jellyfish, lamp, sphere, and
plane mesh as Dy, D1, D2, D3, Dy, respectively. We sample 1 million points from the WuKong mesh, denoting these samples as Xo.
Applying the inversion we obtain Ng = Dy~ (Xo). In the leftmost column, we show the samples D1 (No), D2(No), D3(No), Da(No),
which closely approximate the original shapes, demonstrating the accuracy of our trained diffusion nets. For Dy, we show results at
timesteps 0, 10, 15, 20, 25, 30, 64 aligned from left to right. For Dy, D2, D3, D4 we show results at timesteps 30, 40, 45, 48, 52, 55, 64,
aligned from right to left.

