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6. More Discussions

Does detection backbone in UA3D only use a dense pre-
diction head? No, UA3D does not alter the overall detec-
tion pipelines of the original 3D detection backbone. For
example, in PointRCNN, the detection process still includes
both a dense prediction head and an ROI head. However, the
uncertainty estimation and regularization process are con-
ducted during the dense prediction head for two reasons: (1)
The number of dense predictions corresponds to the num-
ber of points in the point cloud, which remains consistent
across different inferences on the same point cloud. This
makes it convenient for the uncertainty estimation process,
as primary and auxiliary dense predictions can be directly
matched and compared. (2) Dense predictions cover the
full prediction of the 3D detector, facilitating a more com-
prehensive uncertainty estimation process.

Can the discrepancy between primary and auxiliary de-
tector predictions effectively capture uncertainty? Yes.
For accurate pseudo-boxes (with low uncertainty) that
match the distribution of object points, both detectors tend
to generate similar detection results. Conversely, for inac-
curate pseudo-boxes (with high uncertainty), one detector
could produce accurate results based on knowledge learned
from other training data, while the other can overfit to the in-
accurate pseudo-boxes. Consequently, discrepancies in pre-
dictions can be observed, effectively capturing uncertainty.
Is UA3D limited to PointRCNN? No, UA3D is not lim-
ited to specific detection backbones. For 3D detectors with
various structures, the detection process typically concludes
with different detection heads. UA3D can achieve uncer-
tainty estimation by duplicating an existing head to cre-
ate primary and auxiliary detectors. The discrepancy be-
tween these two detectors’ predictions can be utilized to
estimate uncertainty and implement the regularization pro-
cess. Based on this principle, in PointRCNN, we choose
the dense head to perform fine-grained uncertainty estima-
tion and regularization.

How is the auxiliary detector initialized? The auxiliary
detector is trained from scratch. We do not rely on pre-
trained checkpoints. The initialization step is the same as
that of the original primary detector. This ensures general-
izability across various 3D detector structures, as no specific
or fixed design is adopted.

Why can uncertainty estimation reflect the inaccuracy
of pseudo boxes? Accurate pseudo boxes are well-aligned
with the object regions in the input point cloud, typically
exhibiting consistent characteristics such as tightly enclos-

ing specific point groups and maintaining a reasonable size.
In contrast, inaccurate pseudo boxes show significant and
unpredictable variations, making them harder to interpret.
This inherent uncertainty can confuse the model, leading
to highly varying predictions for the same object. Conse-
quently, discrepancies between the two detector predictions
indicate elevated uncertainty, reflecting the inaccuracy of
pseudo boxes.

Why choose dense predictions for uncertainty estima-
tion instead of using predictions from the Region-of-
Interest (ROI) head? Since the dense outputs predict a
box for each point in the point cloud, they generate the
same number of predictions regardless of the model struc-
ture, ensuring consistency between primary and auxiliary
detectors. This consistency naturally simplifies the calcu-
lation of differences between two detector predictions for
estimate uncertainty. In 3D detection model, ROI head ag-
gregates point-wise predictions into certain numbers of final
bounding boxes, and the numbers of predicted boxes can
vary between the primary and auxiliary detectors. While
it is feasible to utilize the output from ROI head for un-
certainty estimation, the different numbers of boxes from
primary and auxiliary detectors require a matching process.
Matching boxes between two detectors introduces signifi-
cant computational overhead. Given the additional training
cost, we choose not to rely on the predictions from ROI
head.

Why is uncertainty regularization fine-grained? Our cal-
culation process operates at the box coordinate level. This
allows our method to identify coordinate-specific inaccura-
cies in pseudo boxes and dynamically mitigate their nega-
tive influence. During the pseudo box generation process,
pseudo boxes can exhibit inaccuracies in specific coordi-
nates, such as only in the orientation angle. In such cases,
treating the entire box as fully certain or uncertain is not
reasonable. Our fine-grained regularization approach can
selectively reduce the negative influence of the inaccurate
coordinate while preserving the efficacy of other accurate
coordinates.

What differentiates our work from the model ensemble
approaches [35]? We focus on improving the performance
of a single model. Our final detection results benefit from
regularization gained from both the primary and auxiliary
detectors. During the inference phase, we only enable the
primary detector, rather than typical model ensemble ap-
proaches that aggregate multiple different models. Notably,
our approach is also scalable and can be applied to individ-



ual models within an ensemble, if desired.
Why not conduct experiment on Waymo? We choose
datasets with multi-traversal data, which is essential for
a fair comparison with existing method MODEST. Since
Waymo does not contain multi-traversal data, we do not uti-
lize this dataset.
Could two branches yield similar predictions for noisy
pseudo boxes? Or could auxiliary branch introduce
noise for accurate pseudo boxes? Those cases could hap-
pen, while as corner cases. To provide an overview of
UA3D uncertainty estimation results, we present the statis-
tical uncertainty distribution (see Fig. 2). We observe a clear
gap between uncertainty distributions of accurate pseudo
boxes and noisy ones. Overall, UA3D could not address
100% noisy cases. However, for most inaccurate pseudo
labels, they are assigned with high uncertainty. UA3D mit-
igates negative influence of most noisy pseudo labels, and
finally improves detector performance.
Why not utilize data augmentation to cause variance in
predictions? Data augmentation-based methods are time-
consuming as they require multiple inferences. In contrast,
UA3D processes data with an auxiliary branch in a single
forward pass, making uncertainty estimation more efficient.
Can uncertainty be pre-calculated, so that no calcula-
tion is needed during training? Pre-calculated pseudo la-
bel uncertainty like confidence score is good for initializa-
tion, but tends to degrade in quality as training progresses.
For instance, certain samples that initially exhibit high un-
certainty become increasingly reliable over the course of
training. Therefore, UA3D adopt the on-the-fly uncertainty,
which surpass the pre-defined uncertainty (see Tab. 3).
Does UA3D have tendency to predict high uncertainty?
We add uncertainty U into loss to suppressL this tendency.
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Losses for two detectors are £ =3, (55557 +A - Ui),

and LY = Z;l(exﬁpwi) + A - U;) (see Eq. 2). The X - U;
serves as penalty term for consistently high uncertainty.
Can UA3D improve detector recall? UA3D does im-
prove both precision and recall. Noisy or inaccurate labels
are given less weight, while all accurate labels keep their
weights. This means reliable labels naturally get more em-
phasis within every iteration. By focusing more on these
accurate labels, UA3D not only improves precision but also
helps increase recall (see Fig.5 (b)).

Why not apply different augmentations to the input
point cloud for the primary and auxiliary detectors to
better capture uncertainty? Different perturbations in the
input point cloud could enhance the uncertainty estimation
process. However, we have observed that the proposed pri-
mary and auxiliary detector design is already sufficient to
capture uncertainty. Therefore, we do not adopt additional
point cloud augmentation.

Can UA3D improve fully supervised training processes?
Yes, UA3D can enhance training using human labels. Even
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Figure 6. Detailed explanation of our uncertainty visualization
in Bird’s Eye View (BEV). (1) Uncertainty of length: it is visu-
alized by the gap between the length coordinates of the purple
and boxes. (2) Uncertainty of width: it is similarly repre-
sented by the gap between the width coordinates of the two boxes.
(3) Uncertainty of height: it is depicted as the gap between the
height coordinates of the two boxes, though it is omitted in BEV
for brevity. (4) Uncertainty of position x: it is shown by the length
of the purple line extending horizontally (left-to-right). (§) Uncer-
tainty of position y: it is represented by the length of the purple
line extending vertically (top-to-bottom). (6) Uncertainty of posi-
tion z: it is visualized by the length of the purple line along the
z-axis, but it is not shown in BEV for simplicity. (7) Uncertainty
of orientation: it is denoted by the length of the purple diagonal
line.

annotations from human experts can contain inaccuracies
and noise, due to the inherent difficulty in annotating pre-
cise 3D boxes for distinct objects. UA3D can mitigate the
negative impact of such noisy labels and potentially im-
prove model performance. However, the issue of inaccu-
rate pseudo-boxes is more severe in unsupervised settings.
Therefore, we focus on this setting to better demonstrate the
effectiveness of UA3D.

7. Explanation of Uncertainty Visualization

Here we first elaborate our uncertainty visualization in
Fig. 6. The uncertainties in length, width, and height are
represented by the gap between the corresponding coordi-
nates of the purple and boxes. For the uncertainties
in position (X, y, z) and orientation, they are visualized by
the lengths of the purple lines along the respective direc-
tions.

8. More Qualitative Results

Detection Results Comparison. We present additional
qualitative results in Fig. 7. As shown in Fig. 7 (a), our
uncertainty-aware framework generates more accurate pre-
dictions regarding object shape, location, and orientation.
This improvement is attributed to our proposed uncertainty
estimation and regularization, which mitigate the negative



effects of inaccurate pseudo boxes at a fine-grained coor-
dinate level. Fig. 7 (b) further shows that our method is
more effective in recalling difficult object categories, e.g.,
far and small objects. Our uncertainty-aware framework en-
hances the prominence of accurate pseudo boxes for these
challenging objects, facilitating more effective recognition
of those objects.

Correspondence Between Noisy Pseudo Box and High
Uncertainty. We further present a detailed analysis for the
correspondence between noisy pseudo box and high esti-
mated uncertainty (see Fig. 8).

9. Implementation Details

Hyper-parameters. We follow MODEST [50] settings. for
nuScenes [2], the batch size is set to 2 per GPU. We con-
duct training for 80 epochs using the Adam optimizer with
a one-cycle policy. The initial learning rate is 0.01, with
a weight decay of 0.01 and a momentum of 0.9. Learning
rate decay is applied at epochs 35 and 45 with a decay rate
of 0.1. Additionally, a learning rate clip of 1e~7 and a gradi-
ent norm clip of 10 are employed. We perform one round of
seed training followed by 10 rounds of self-training for all
experiments. Each round of training takes approximately 4
hours, resulting in a total training time of about 44 hours (4
hours x 11 rounds). For Lyft [11], we reduce the number of
epochs to 60 for efficiency, considering that the Lyft dataset
is 3 times larger than nuScenes. The self-training pipeline
for Lyft also consists of one round of seed training and 10
rounds of self-training. Each training round takes approxi-
mately 12 hours, leading to a total training time of around
131 hours (12 hours x 11 rounds). Other settings remain the
same as those for nuScenes, without specific tuning, to vali-
date the generalizability of our proposed uncertainty-aware
framework.

Data Processing. For both nuScenes and Lyft, we apply
several data augmentations. We sample 6,144 points per
point cloud for nuScenes, while for Lyft, we sample 12,288
points per point cloud, as the point clouds in Lyft are gen-
erally denser than those in nuScenes. We perform random
world flipping of the entire point cloud along the x-axis. We
also apply random world rotation within the angle range of
[-0.785, 0.785] and random world scaling within the scale
ratio range of [0.95, 1.05]. Point shuffling is applied to the
training set but not to the test set. We focus on object dis-
covery, following the trajectory of previous works such as
MODEST, OYSTER, and LiSe. We do not explicitly con-
sider object categories during the experiments.
Self-training Pipeline. Our uncertainty-aware framework
operates within a self-training pipeline, following the com-
mon settings in previous works [50]. In general, a self-
training pipeline consists of two stages: seed training and
self-training. Initial generated pseudo boxes are referred to
as seeds. During the seed training, an initial detection model

is trained based on those seeds. Then the trained model
from previous round is first applied to the training set to ob-
tain refined pseudo boxes. During the self-training, a new
detection model is trained on the refined pseudo boxes. The
process is iteratively repeated for 7" rounds.

We visualize the obtained uncertainty in Fig. 8 and
such analysis further validates the correspondence between
the pseudo boxes inaccuracies and estimated uncertainty.
Specifically, we observe that accurate pseudo boxes, which
typically lead to consistent predictions from both the pri-
mary and auxiliary detectors, exhibit low uncertainty. In
contrast, when a pseudo box shows inaccuracies in certain
coordinates, the estimated uncertainty for those coordinates
is significantly higher since the predictions from the pri-
mary and auxiliary detectors diverge on those coordinates.

10. Real-world Application and Limitations

Application. There are several potential ways in which
unsupervised 3D object detection could benefit real-world
applications. The unsupervised setting enables large-scale
pretraining on vast amounts of unlabeled data. Additionally,
the generated pseudo labels can serve as initial raw annota-
tions, which can then be refined through human filtering,
thereby reducing annotation costs.

Limitations. We provide a statistical overview of our es-
timated uncertainty in Fig. 2. We observe that most in-
accurate pseudo boxes are assigned with high uncertainty.
However, a few cases with incorrectly estimated uncertainty
cannot be fully avoided in our framework and our proposed
method tends to fall short in addressing these cases.
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Figure 7. Further qualitative comparison between different methods. We compare our uncertainty-aware framework with previous
works, e.g., MODEST and OYSTER. Green boxes denote the ground-truth and red boxes represent predictions from the detection model.
(a) Our uncertainty-aware framework shows more accurate perceptions of various foreground objects. (b) In challenging scenarios, such
as distant objects with sparse point clouds or small objects, our method achieves a higher recall rate.
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Figure 8. Correspondence between pseudo label inaccuracy and high uncertainty. (a) We present ground truth and pseudo boxes in
two different point clouds (left and right columns). Each point cloud contains both accurate and inaccurate pseudo boxes. We observe
that pseudo boxes can be significantly inaccurate in terms of the shape, location, and rotation. Direct usage of these boxes for training
can easily impair the performance of the detection model. (b) We present the predictions from the primary and auxiliary detectors. Two
detector predictions align closely for objects with accurate pseudo boxes but diverge for those with inaccurate ones. The mismatch between
inaccurate pseudo boxes and the actual point cloud distribution can confuse the model, resulting in varying interpretations. (c) We present
our uncertainty-aware pseudo boxes. Fine-grained coordinate-level uncertainty is estimated, e.g., the orientation uncertainty for the right
object (in left column) is high (as indicated by the long purple diagonal line), due to its inaccuracy in the pseudo box. The colors follow
the same conventions in Fig. 3.
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