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A. Revisit of Contrastive Language-Image Pre-
training (CLIP)

As a pre-trained vision-language model, vanilla CLIP [12]
consists of two main components: a visual encoder and a
text encoder, both of which are pre-trained on large-scale
image-text pairs. To make it clear, we take capital letters in
italic type as two-dimensional maps or images. The bold
font denotes high-order tensors and the calligraphic font
represents a function or a neural network module.

For the ResNet-based visual encoder, the input image
will be encoded into a global visual embedding I ∈ R1×C .
For the text encoder, the input text Ti like ”a photo of a
ci” (ci denotes the class token) is first tokenized, looking
up frozen pre-trained 512-dimensional tokens for each in-
vocabulary word. These tokens are then fed to a standard
transformer to obtain the final text embedding. Suppos-
ing that G denotes the textual encoder, the text embedding
Ti ∈ RC×1 can be formulated as:

Ti = G(Ti) (1)

The prediction probability of class ci is calculated :

p(ci) =
exp(sim(I,Ti/τ))∑K
j=1 exp(sim(I,Tj/τ)

. (2)

where sim(·, ·) denotes the cosine similarity between two
inputs and τ is a learnable temperature parameter.

B. Implementation Details

We replace the original DepthNet/depth encoder with
the same CLIP–DINO fusion module trained with our
depth-contrastive scheme, regardless of whether the en-
coder uses a ResNet or Transformer backbone. Then we
adopt the DPT head for depth reconstruction in place of the
original decoder in each method, leaving other modules like
PoseNet and training strategy unchanged. 2). Specifically,
for Monodepth2 and Mono-VIFI, we simply replace the
original depth network with the CLIP and DINO encoders,
preserving all other components, including the pose and
temporal-consistency branches. 3). For ManyDepth, we
construct the cost volume separately using CLIP and DINO,
and replace the teacher network with Hybrid-depth (monoc-
ular version).

C. Experiments Details
C.1. Datasets
C.1.1. KITTI
This dataset contains numerous driving videos in urban
scenes, and it is the most widely used dataset in self-
supervised MDE approaches. Following previous work
[4, 17], we employ the Eigen split [2] which has 697 im-
ages for testing, and train the model on the entire 39,810
images from the training set. Depth ranges are cropped at
0.1 ∼ 80 meters, and the input/output resolution is set to
640× 192.

C.1.2. NuScenes
NuScenes [1] is a large-scale autonomous driving bench-
mark containing data from six cameras, one LiDAR, and
five radars. There are 1000 scenarios in the dataset, which
are divided into 700, 150, and 150 scenes for training, val-
idation, and testing, respectively. Therefore, NuScenes has
become the most widely used dataset in Bird-Eye-View
(BEV) perception [6–8].

C.2. Evaluation Metrics
In terms of self-supervised MDE, we employ four typical
error metrics to quantify the disparity between predicted
and ground truth depth, as outlined in [2]. These metrics in-
clude the absolute relative error (Abs Rel), the squared rel-
ative error (Sq Rel), the root mean squared error (RMSE),
and the logarithmic root mean squared error (RMSE log).
Additionally, three accuracy metrics are computed, which
give the fraction δ of predicted depth inside an image whose
ratio and inverse ratio with the ground truth is below the
thresholds: 1.25, 1.252, and 1.253.

For the 3D detection task, we report nuScenes Detec-
tion Score (NDS), mean Average Precision (mAP), as well
as five True Positive (TP) metrics, including mean Aver-
age Translation Error (mATE), mean Average Scale Error
(mASE), mean Average Orientation Error (mAOE), mean
Average Velocity Error (mAVE) and mean Average At-
tribute Error (mAAE).

D. Experiments
D.1. The Quantitative Result on Improvement

Benchmark
To reduce the influence of noise in the sparse depth from
Velodyne, we also evaluate using 93% of the Eigen split



Method W × H Train Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE
log ↓ δ <1.25 ↑ δ <1.252 ↑ δ <1.253 ↑

PackNet-SfM [5] 640 × 192 M 0.078 0.420 3.485 0.121 0.931 0.986 0.996
R-MSFM6 [18] 640 × 192 M 0.088 0.492 3.837 0.135 0.915 0.983 0.995
DIFFNet [16] 640 × 192 M 0.076 0.414 3.495 0.119 0.936 0.988 0.996
MonoViT [15] 640 × 192 M 0.074 0.388 3.414 0.115 0.938 0.989 0.997
Lite-Mono [14] 640 × 192 M 0.082 0.455 3.685 0.127 0.923 0.985 0.996
Mono-ViFI [9] 640 × 192 M 0.080 0.400 3.497 0.121 0.930 0.987 0.997
D-HRNet [10] 640 × 192 M 0.077 0.423 3.496 0.119 0.935 0.987 0.996
RA-Depth [11] 640 × 192 M 0.074 0.363 3.349 0.114 0.940 0.990 0.997

Monodepth2 [4] 640 × 192 M 0.090 0.545 3.942 0.137 0.914 0.983 0.995
w/ Hybrid-depth 640 × 192 M 0.072 0.335 3.265 0.110 0.944 0.991 0.998

Table 1. Performance comparison on KITTI [3] using improved ground truth from [13], with a resolution of 640 × 192. The best results
are in bold; the second best is underlined. The methods integrate with Hybrid-depthmodules outperform all previous methods by a large
margin on all metrics.

with the improved ground truth from [13] as shown in Ta-
ble .1, which contains 652 test frames.

D.2. More Ablation Studies
Q1: Does the size of the visual encoder affect the per-
formance? As shown in Fig. 1, the performance metric
at δ < 1.25 improves as the size of the visual encoder
increases, indicating that enhanced representation learning
leads to better overall performance. Moreover, our method
consistently outperforms previous approaches.
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Figure 1. The metric at δ < 1.25 with variant backbone size.
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