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6. More Method Details
GF-NMS. First, we transform the incidence matrix H out-
put by HyperGCT into an adjacent matrix A as follows:

A =
[
H+H⊤ − 1

]
+
. (17)

The motivation is to check the consistency between ver-
tices. If ei contains vj and ej contains vi (i.e., H(vi, ej) =
H(vj , ei) = 1), then vi and vj are considered consistent,
with A(vi, vj) = A(vj , vi) = 1. Second, we apply a graph
filter based on the degree signal of A to compute scores for
each correspondence:

sGF = MinMax((DA −A)D(A)), (18)

where DA is the diagonal degree matrix of A and D(A) is
the degree vector of A. MinMax is the min-max normal-
ization operation. Higher values of sGF

i indicate that vi has
strong local connectivity, reflecting its structural importance
within the graph. Third, we employ standard NMS to se-
lect correspondences with confidence scores ŝ that are local
maxima, resulting in N1 seeds (N1 ≪ Ns). The remaining
correspondences are then ranked by sGF in descending or-
der, and the top Ns −N1 ones are selected as the other part
of the seed set. As shown in Table 13, GF-NMS generates
twice as many inliers as NMS, indicating its effectiveness.

Table 13. The average number of inliers among seeds.

NMS GF-NMS

3DMatch FPFH 64 152.65
FCGF 232.57 425.96

3DLoMatch FPFH 11.44 28.27
FCGF 49.69 96.40

7. More Analysis.
Using Different Order Graphs. We replace the second-
order graph (SOG) with the first-order graph (FOG) to con-
struct the initial hypergraph in Sect. 3.2 and conduct exper-
iments on 3DMatch/3DLoMatch, KITTI-10m, and KITTI-
LC. The results from Tables 14, 15 and 16 show minimal
performance differences between different order graphs, in-
dicating that HyperGCT is robust and not sensitive to graph
orders.
Combined with Transformer-based Methods. We con-
duct experiments on 3DMatch and 3DLoMatch using
the correspondence generated by CoFiNet [48] and Geo-
Trans [29]. We apply the same RE/TE criteria and compar-
ison methods in Sect. 4.2. Following [29], point cloud pairs

Table 14. Registration results on 3DMatch/3DLoMatch.

3DMatch / 3DLoMatch RR (%) RE (◦) TE (cm)

FCGF w. SOG 94.45 / 63.73 2.04 / 4.18 6.34 / 10.17
w. FOG 94.39 / 63.50 2.04 / 4.05 6.33 / 10.08

FPFH w. SOG 85.89 / 42.28 2.26 / 4.81 6.74 / 10.80
w. FOG 85.77 / 42.22 2.25 / 4.59 6.75 / 10.81

Table 15. Regstration results on KITTI-10m.

KITTI-10m RR (%) RE (◦) TE (cm)

FCGF w. SOG 98.92 0.32 19.82
w. FOG 98.92 0.32 19.83

FPFH w. SOG 99.10 0.34 7.74
w. FOG 99.10 0.34 7.72

Table 16. Registration results on KITTI-LC.

KITTI-LC RR (%) RE (◦) TE (cm)

0-10m w. SOG 97.05 0.27 7.47
w. FOG 97.05 0.27 7.45

10-20m w. SOG 72.46 0.55 15.24
w. FOG 72.37 0.55 15.40

20-30m w. SOG 25.95 0.76 22.84
w. FOG 26.43 0.75 21.70

from adjacent frames are excluded from the evaluation. As
shown in Table 17, on the 3DMatch dataset, the quality of
correspondences generated by the transformer-based meth-
ods is already quite high. Hence, the performance improve-
ments brought by all compared methods are relatively lim-
ited. However, HyperGCT has achieved the largest im-
provements of all. Specifically, HyperGCT boosts CoFiNet
by 1.56%, reaching a recall of 93.04%, and improves Geo-
Trans by 0.54%, achieving a recall of 94.99%. As indi-
cated in Table 18, on the 3DLoMatch dataset, due to the
limited quality of the matches produced by the transformer-
based methods, all the compared approaches show signifi-
cant performance gains. HyperGCT improves CoFiNet by
6.96%, reaching a recall of 70.63%, and increases GeoTrans
by 1.50%, achieving a recall of 78.33%.
Model Complexity. In terms of practical benefits, our
method achieves consistent registration, robustness, and
generalization advantages. Furthermore, as shown in Ta-
bles 1 and 2, our runtime (∼0.2s) is comparable to
VBReg (CVPR 2023), and our model has fewer parameters
than both PointDSC (CVPR 2021) and VBReg (Table 19).
Therefore, the complexity introduced is well justified by the
gain in performance and flexibility.
Inductive Biases. Our entire architecture is designed to
incorporate inductive biases beyond the non-local compo-



Table 17. Registration results on 3DMatch.

CoFiNet [48] GeoTrans [29]
RR (%) RE (◦) TE (cm) RR (%) RE (◦) TE (cm)

Origin 91.48 2.59 8.19 94.45 1.85 6.11
SC2-PCR [5] 92.89 2.16 6.93 94.61 1.84 6.14
MAC [46] 92.73 2.22 6.55 94.53 1.92 5.74
PointDSC [2] 92.65 2.15 6.94 94.53 1.84 6.14
PG-Net [38] 92.65 2.15 6.94 94.61 1.84 6.15
VBReg [19] 92.89 2.16 6.94 94.68 1.84 6.15
Hunter [47] 91.63 2.15 6.94 94.68 1.85 6.19
3DPCP [37] 92.18 2.09 6.82 94.61 1.83 6.25
HyperGCT 93.04 2.15 6.94 94.99 1.84 6.16

Table 18. Registration results on 3DLoMatch.

CoFiNet [48] GeoTrans [29]
RR (%) RE (◦) TE (cm) RR (%) RE (◦) TE (cm)

Origin 63.67 4.20 11.47 76.83 2.84 8.69
SC2-PCR [5] 69.00 3.40 9.73 77.58 2.86 8.78
MAC [46] 70.51 3.54 9.82 78.33 3.01 8.82
PointDSC [2] 68.37 3.38 9.75 77.11 2.83 8.73
PG-Net [38] 68.95 3.39 9.74 77.52 2.86 8.80
VBReg [19] 70.34 3.40 9.79 78.04 2.83 8.77
Hunter [47] 65.82 3.36 9.70 77.35 2.87 8.90
3DPCP [37] 67.56 3.21 9.43 76.53 2.75 8.61
HyperGCT 70.63 3.39 9.84 78.33 2.82 8.74

Table 19. Parameter scale of compared learning-based methods.

Method PointDSC PG-Net VBReg Hunter 3DPCP Ours
# params (M) 1.05 0.96 3.25 0.01 0.27 0.98

nent, in order to effectively learn high-order geometric con-
straints. Specifically: 1) We leverage SOG, constructed us-
ing dynamic compatibility thresholds, as a strong geometric
prior. This helps the model adapt to varying input distribu-
tions by injecting structured information directly into the
learning process. 2) The backbone of HyperGCT is a graph
neural network, which inherently encodes a relational in-
ductive bias. Its shared update functions over vertices and
hyperedges allow it to generalize across graphs of different
sizes and connectivity patterns. 3) Our multi-layer architec-
ture gradually reduces the ratio of node–hyperedge associ-
ations across layers. This enables broad information propa-
gation in shallow layers, while enforcing more reliable, se-
lective message passing in deeper layers. We believe these
combined inductive biases contribute significantly to the ro-
bustness and generalization capability of our method.
Generalization. Our method’s improved generalization
comes from two aspects. First, unlike conventional
correspondence-based approaches that depend heavily on
dataset-specific discriminative features, our method treats
relationships across different data modalities as a gener-
alized, dataset-agnostic hypergraph structure. This helps
the front-end network mitigate biases tied to specific data
modalities, enhancing generalization and robustness. Sec-
ond, unlike traditional outlier rejection strategies that rely

solely on learned discriminative features, our back-end
solver leverages learned geometric constraints to explore
the solution space in a more nuanced manner systematically.
This approach avoids the limitations of feature-centric out-
lier filtering and instead captures a broader range of poten-
tial solutions, significantly enhancing hypothesis generation
and verification processes.

8. Dataset Statistics
We present the details for all datasets in Table 20, including
the average number and inlier ratios for FPFH matches.

Table 20. Dataset information.

Dataset Type Modality # Pairs # Matches Inlier ratio
3DMatch [49] Indoor RGB-D 1623 4710 6.84%
3DLoMatch [18] Indoor RGB-D 1781 4653 1.68%
KITTI-10m [28] Outdoor LiDAR 554 8000 4.52%

KITTI-LC [28] Outdoor LiDAR
914

8000
6.25%

1151 1.94%
1260 0.81%

ETH [26] Outdoor LiDAR 713 5000 0.84%

9. Visualizations
We provide visualizations of registration results on the in-
door scene 3DMatch (Fig. 4), outdoor scene KITTI (Fig. 5),
and outdoor scene ETH (Fig. 6). Our approach accu-
rately registers the data where PointDSC, Hunter, and MAC
fail. This demonstrates that HyperGCT offers stronger con-
straint capability for generating correct transformation hy-
potheses.



Hunter MAC HyperGCT Ground Truth
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Figure 4. Visualizations of registration results. Rows 1-3 are from 3DMatch, Rows 4-6 are from 3DLoMatch.



Hunter MAC HyperGCT Ground Truth
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Figure 5. Visualizations of registration results on KITTI-LC. Each visualization provides both a global view (upper row) and a detailed
local perspective (lower row).



PointDSC Hunter HyperGCT Ground Truth
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Figure 6. Visualizations of generalization results on ETH. For each set of results, we highlight the same point cloud region with a red box
to compare differences across methods.


