KinMo: Kinematic-aware Human Motion Understanding and Generation

Supplementary Document

A. Overview

This supplementary document contains further details on
dataset collection and our framework, additional ablation
studies and experimental results, and limitations of KinMo.
For more visual results, refer to the demo videos on the
project page: https://andypinxinliu.github.io/
KinMo.

B. Dataset Collection Details

Unlike conventional dataset annotation approaches, which
require extensive human labeling and verification, our semi-
automatic data collection pipeline with human in the loop
significantly reduces the cost while providing high-quality
annotation. The procedure is described in the following:

Pose Text Description Generation. To generate text de-
scriptions for individual poses, we adopt PoseScript [2],
which provides detailed descriptions for each pose by cap-
turing fine-grained details of joint positions and their spatial
relationships. In addition to providing a textual represen-
tation of the pose, PoseScript is capable of describing the
relative positions of different joints, which is crucial for un-
derstanding complex human motion.

Keyframe Selection. While PoseScript offers per-frame
annotations, it does not provide a direct way to capture the
temporal transitions between poses over time. We observe
that text descriptions for temporally adjacent frames are of-
ten very similar. In contrast, frames that are farther apart in
time exhibit less overlap in their descriptions, often present-
ing different semantics.

Based on this observation, we devise a keyframe-based
approach detailed as follows. We utilize sSBERT [16] to ex-
tract embeddings for the PoseScript-generated descriptions
of each frame. By calculating the cosine similarity between
these text embeddings, we can measure the similarity of
poses across frames. If the cosine similarity between two
frames falls below a threshold of 0.8, we classify the frame
as a keyframe, marking a significant temporal transition.
This allows us to isolate key moments in the sequence that
represent meaningful pose changes and filter out redundant
frames for subsequent analysis. We then compute tempo-
ral local motions by analyzing kinematic group differences
across a specified time window, allowing us to capture finer

Their elbows are partially bent with their right hand
next to their right knee with their feet to the front,
approximately shoulder width apart, their hands and
their knees are shoulder width apart, their left hand is
at the level of their left knee and their left knee is bent
at near a 90 degree angle while their right thigh is
horizontal while their right knee is bent.

Keyframe 2
N

The right thigh is parallel to the ground while the
right hand is past shoulder width apart from the
other. Both elbows are partially bent. Both hands are
at the level of the knees. Both feet are to the front.
The feet and both knees are about shoulder width
apart while the left knee is forming a | shape while
the torso is vertical with the right knee almost
completely bent.

Keyframe 1

Figure 1. Visualization of Sample Keyframes. We use Pos-
eScript to obtain per-frame text annotations for poses and select
keyframes based on sentence similarities.

motion details within the pose sequence. Fig. | shows a
visualization of sample keyframes within our dataset.

Temporal Joint Motion Reasoning. For reasoning about
the potential motions of kinematic groups across keyframes,
we leverage a Large Language Model (LLM), specifically
GPT-4 [11]. Given the text descriptions of the selected
keyframes, GPT-4 is tasked with generating potential mo-
tions for each kinematic group by reasoning through the
temporal relationships between poses. To guide the LLM,
we provide a well-structured prompt design, shown in
Tab. 1. We give a system prompt to use GPT-4 as a mo-
tion labeler, providing a specific answer format instruction
and content instruction. During each query, the user prompt
contains one specific annotation example with explanation
for one-shot in-context-learning and the keyframe descrip-
tions needed to be annotated. A real example prompt for a
single motion sequence is provided in Tab. 8, and its cor-
responding annotation result is shown in Tab. 9. This de-
sign allows the model to infer the most likely motions of
specific kinematic groups and predict how they may evolve
over time. The reasoning process enables the system to gen-
erate coherent and realistic motion sequences based on the
selected keyframes.

Human Evaluation. Human evaluators play a critical role
in ensuring the accuracy and quality of text and motion pre-



Table 1. Prompt template for automatic dataset annotation.
We show one specific example in Tab. 8 with more details.

System Prompt

You are a motion description labeler who should describe
the motion using your language as detailed as possible.
Now, describe the motion in the given video or text by
describing the motion of each kinematic group respec-
tively: Kinematic groups: torso, neck, left arm, right arm,
left leg, right leg.

[Answer Format Instruction]

To describe a motion, you should describe Inside each
group and Between groups:

INDIVIDUAL GROUP: torso: <MOTION DESCRIP-
TION>; neck: <MOTION DESCRIPTION>...

[Answer Content Instruction]

In your description, you can use simple adjectives or
numerical scale (distance/degree/speed) to describe each
motion (for example, push forward for 3 meters, from 0
to 45 degrees, etc)...

User Prompt

[One-shot Example for In-Context-Learning]

Think about the motion: [a man stumbles to his right.
the motion seems sudden so he was probably pushed. a
person standing loses balance, falling to the right and
recovers standing...

[Data to be Annotated]

dictions generated by the system. The evaluation process is
conducted in two stages:

* Keyframe Selection Evaluation. Two human evaluators
review the selected keyframes by the system and the cor-
responding rendered motion sequences. They identify the
optimal cosine similarity threshold for filtering keyframes
and examine whether the selected keyframes adequately
capture the most significant pose transitions. The thresh-
old is iteratively adjusted based on the evaluators’ feed-
back to improve the precision of keyframe selection.

* Text Description Evaluation. The evaluators also assess
the generated text descriptions for each joint-level mo-
tion. They determine whether the descriptions accurately
reflect the motion dynamics and satisfy the intended cri-
teria. If errors or inconsistencies are found, the evaluators
provide feedback to the system, prompting a revision of
the current prompt design. This iterative process contin-
ues until the evaluators reach a consensus, measured by a
Cohen’s Kappa statistic of at least 0.8, indicating a strong
agreement.

The evaluators spent about one day interacting with LLM
for the iterative prompt optimization. Both the average

Table 2. Evaluation Results of KinMo detailed descrip-
tions. Bad Response Rate (BRR) is assessed by BRR =

items with score<5
total items

Evaluation | preservation of capture of consistency with Metrics
Method spatial detail ~ temporal dynamics  the global text

Human 8.24 8.01 8.71 Average Score
evaluation 2.96% 3.15% 1.32% BRR
LLM 8.30 8.12 8.55 Average Score
evaluation 2.68% 2.37% 1.55% BRR

prompt length and returning answer is less than 1000 words,
resulting in approximately 3200 tokens for both input and
output, and 23 USD final cost for the whole annotation
(44,970 motion sequences).

Accuracy of KinMo Annotation. We conducted two com-
plementary evaluations: (a) Human evaluation: Five inde-
pendent annotators (not involved in the annotation) assessed
500 randomly selected samples. Each annotator viewed the
motion video and scored the associated description on a
scale of 0-10 for three criteria: spatial accuracy, tempo-
ral coherence, and consistency with the global text. The
average scores in Tab. 2 indicate strong alignment between
motion and text. (b) LLM-based evaluation: We used GPT-
4o-mini [11] to perform the same evaluation, using a struc-
tured prompt (Tab. 1) and scoring based on the same crite-
ria. LLM-based scores were similarly high, with <5% of
samples flagged as potentially inconsistent. These evalua-
tions demonstrate that KinMo’s auto-generated descriptions
reliably capture both spatial and temporal motion details at
scale, reinforcing the quality of our dataset beyond indirect
task-based metrics.

C. Additional Implementation Details

Hierarchical Text-Motion Alignment. Both the mo-
tion and text encoders are based on Transformer architec-
tures [19]. We add two tokens in front of the raw sequence
to represent the mean and standard deviation, akin to those
in the VAE-based ACTOR model [12]. These encoders are
probabilistic, generating parameters of a Gaussian distribu-
tion (1 and X) from which a latent vector z € R? can be
sampled. The text encoder processes input features from a
pretrained and frozen RoBERTa [9] model, while the mo-
tion sequence is given directly as input to the motion en-
coder. As for the cross-attention that connects three levels
of semantics, we use one transformer block containing one
multi-head attention layer with one MLP layer. For the neu-
ral network, we set the latent dimension to 512, the number
of heads to 6, and the feed-forward size to 1024. We train
this module for 70 epochs, with other settings the same as
in TMR [13].

Text-Motion Generation. We use MoMask [6] as our gen-
erator architecture. During the training process, to enhance
the model’s robustness to variations in text input, we ran-
domly omit 10% of the text conditioning. This approach



Table 3. Global Action Text, Low-level Text and Motion as Tri-modality Retrieval Benchmark on HumanML3D [4]. HText denotes
Global Action-level descriptions, LText demotes joint-level motion descriptions.

HText-Motion Retrieval

Motion-HText Retrieval

Setting R@1+ R@2+ R@31 R@51 R@10T MedR||R@11 R@21 R@31 R@51 R@101T MedR |
(a) All ‘ 3.67 7.17 1032 1573  25.12 40.00 ‘ 4.39 8.08 11.56 1723 26.81 38.00
(b) All with threshold ‘ 7.98 13.87 1847 2586  36.39 22.00 ‘ 7.60 1227 1640 2197  31.36 30.00
(c) Dissimilar subset ‘ 34.15 5244 5854 7256  81.10 2.00 ‘ 37.20 5488 6280 6890  79.27 2.00
(d) Small batches ‘ 60.76 7579 8135 8693  91.79 1.10 ‘ 61.26 7626 8197 87.24  91.63 1.11
Setting LText-Motion Retrieval Motion-LText Retrieval

R@l11T R@21 R@31 R@51 R@101 MedR) |R@11T R@271 R@31 R@51 R@I101T MedR |
(a) All ‘ 3.57 7.17 9.82 1477 2430 37.00 ‘ 4.15 8.17 11.39 15.89 2542 37.00
(b) All with threshold ‘ 7.12 1239  16.65 23.85 3548 22.00 ‘ 7.31 12.06 16.06 21.09 31.21 30.00
(c) Dissimilar subset ‘ 4536  70.10 7526 80.41 85.57 2.00 ‘ 4639 68.04 7526 81.44  86.60 2.00
(d) Small batches ‘ 62.21 7829 8397 88.57  93.08 1.08 ‘ 63.10 7798 83.87 88.74  93.15 1.05
Setting HText-LText Retrieval LText-HText Retrieval

R@l1t R@21 R@31 R@517 R@I01T MedR||R@]11 R@21 R@31 R@51 R@101T MedR |
(a) All ‘ 0.05 0.10 0.12 0.17 0.38 1905.0 ‘ 1.72 3.00 4.34 6.41 10.89 194.0
(b) All with threshold ‘ 0.07 0.12 0.17 0.57 1.12 1544.0 ‘ 3.19 5.50 7.48 10.60 16.42 132.0
(c) Dissimilar subset ‘ 1.03 2.06 4.12 6.19 15.46 48.00 ‘ 22.68 36.08 4536 55.67 72.16 4.00
(d) Small batches ‘ 434 7.82 11.78 19.44  37.05 14.77 ‘ 40.51 5556 6469 76.10  89.07 2.14

A man crouches A man walks quickly A man is standing and A person appeals to be running in

and punches the down a short distance.

air with his hand.

)&

lost his balance, almost
felt but caught himself.

straight line then jumps over
something and continuous running.

Figure 2. Visualization of Motion Trajectory Control. We leverage pelvis locations to guide the motion generation in addition to the

text.

also facilitates the use of Classifier-Free Guidance (CFG).
Our codebook consists of 512 entries, with each having
a 512-dimensional embedding and 6 residual layers. The
Transformer’s embedding size is 384 and has 6 attention
heads, each with an embedding dimension of 64, spread
across 8 layers. Both the encoder and decoder reduce the
motion sequence length by a factor of 4 when transitioning
to the token space. The learning rate follows a linear warm-
up schedule, peaking at 2e-4 after 2000 iterations. We uti-
lize AdamW optimizer. The mini-batch size is 512 during

the training of RVQ-VAE and 64 for training the Transform-
ers. At inference, the CFG scale is set to c¢fg = 4 for the
base layer and cfg = 5 for the 6 residual layers, with the
generation process running for 10 iterations. To produce
text embeddings, we apply Hierarchical Text-Motion Align-
ment (HTMA), which results in embeddings of size 512.
These embeddings are subsequently reprojected to a 384-
dimensional space to match the Transformer’s token size.

Motion Editing. We leverage a Joint Motion Reasoner to
refine both global and local action descriptions using the
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Figure 3. Motion Trajectory Control. We adopt a ControlNet
architecture to condition the generator with the provided trajectory
of the target joint during the generation. We utilize a CNN encoder
to process the spatial position information and feed it as the input
condition into the control generator network.

users’ input. This model enables precise action-level ed-
its (e.g., changing running to jumping) or local joint adjust-
ments (e.g., slightly raising the hands). Our method follows
a coarse-to-fine approach, assisted by a masking mecha-
nism, to perform these edits at varying levels of granularity.
Specifically, by masking the target sequences and using the
mask generator to fill in the masked area, we can dynami-
cally adjust the motion to meet the target requirement. For
more details on the masking-based editing process, please
refer to MMM [15].

Motion Trajectory Control. Inspired by ControlNet [21]
for Diffusion Models, we incorporate the joint spatial con-
ditioning for trajectory control. As shown in Fig.3, during
this stage, the motion control model is a trainable replica of
the frozen mask motion generator. Specifically, each layer
in the motion Control Generator is appended with a zero-
initialized linear layer to remove random noise in the ini-
tial training steps. The initial 7 poses are defined by the
trajectories of K control joints, g'™ = {g'}7_,, where
g? € RE*3 denotes the global absolute locations of each
control joint. A Trajectory Encoder ®° consisting of convo-
lution layers is used to encode the trajectory signals. Unlike
previous methods like OmniControl [20, 21], which directly
diffuses in the motion space to allow for explicit supervision
of control signals, effectively supervising control signals in
the latent space is non-trivial. Therefore, in addition to us-
ing a motion reconstruction loss based on RQ-Tokenizer de-
coder D to decode the latent z, into the motion space, we
also add a control 108s Lqnro1 to obtain the predicted motion
Xp-

>i 2 mijlIR(%0)ij — R(x0)is13
> Zj Mij

Econtrol =E P (1)

where R(-) converts the joint local positions to global abso-
lute locations and m;; € {0,1} is the binary joint mask at
frame ¢ for the joint j.

In our network design, Motion Control Generator is a
trainable copy of Masked Transformer with the zero linear
layer connected to the output of each Masked Transformer
layer in MoMask [6] to mitigate random noise in the initial
training steps. The spatial encoder is a 3-layer CNN-based
Residual network with a temporal downsampling of factor
4 to encode the trajectory control signal (the joint position
information to be controlled along the sequence).

D. Additional Experimental Results
D.1. Text-Motion Alignment

In this work, beyond the hierarchical text-semantics frame-
work proposed in the main paper, we explored group- and
interaction-level text as alternative semantic representations
for motion. Specifically, we investigated tri-modal align-
ment between global action text, low-level text (includ-
ing both group-level and interaction-level descriptions), and
motion. This initial approach was intuitive. As our joint-
motion reasoner is capable of generating group-level mo-
tion and group interaction scripts conditioned on action-
level motion descriptions, we explored the understanding
capabilities of different semantic levels of motion during
modality alignment.

Challenges with Text Modality Alignment. As shown
in Tab. 3, we observe that retrieval performance between
global action text and low-level text is significantly worse
compared to retrieval between text and motion modalities.
We attribute this to the limitations of existing text encoders,
which fail to capture the necessary reasoning capabilities
to align the corresponding motions at the joint- or global-
action-level. Unlike the joint-motion reasoner in the main
paper, which leverages large language models (LLMs) to
model these relationships, the text encoders used here do
not have the same capacity for motion inference. Interest-
ingly, we find that low-level text to global action text re-
trieval performs better than global action to low-level re-
trieval. We hypothesize that this occurs because low-level
descriptions are more specific, directly corresponding to
joint-level motion patterns, whereas global action descrip-
tions are often more ambiguous. For instance, running can
correspond to a wide variety of motion sequences (e.g., run-
ning with hands raised or running with hands at the sides),
making it more challenging to align with specific low-level
motion details.

Text-Motion Retrieval at Different Levels. As shown in
Tab. 3, low-level text descriptions exhibit better alignment
with the motion modality compared to global action de-
scriptions. This is because low-level text is more directly
tied to specific motion patterns, describing precise joint



Table 4. Cross-Attention Order of Descriptions for Text-
Motion Retrieval.

Motion-to-text retrieval
R@11 R@21 R@31 MedR |
8.28 1247 19.24 21.00

8.93 1399 20.12 18.00
9.01 1592 2142 16.00

Semantic ‘

Text-to-motion retrieval
Sequence

R@I1 R@21 R@31 MedR |

798 12,18 15.64 24.00
8.97 1401 1892 18.00
9.05 15.23 2047 16.00

group-inter-global
global-inter-group
global-group-inter

movements, while global action descriptions are more ab-
stract and can encompass multiple motion sequences. The
increased ambiguity of global action text makes it harder to
align with motion data, which further explains the observed
discrepancy in retrieval performance.

Description Integration Order for Text-Motion Align-
ment. As shown in Tab. 4, we switched the integration order
of global action, group-level descriptions, and interaction-
level descriptions for the text-motion alignment process.
We observe that even though the order largely affects the
performance', all the proposed strategies with additional
descriptions outperform previous methods, confirming that
they are beneficial for the alignment, with an extra perfor-
mance boost using a coarse-to-fine approach.

D.2. Coarse-to-Fine Motion Generation

To assess the contribution of each component within our
pipeline, we design the following variations: (1) CLIP-
C: Only global motion description (original HumanML3D
text) is applied for motion generation, akin to MoMask [6];
(2) CLIP-G: We add group-level semantics using CLIP for
motion generation; and (3) CLIP-I: We additionally add
interaction-level semantics to CLIP-G for motion genera-
tion. We also apply these three settings for Hierarchical
Text Motion Alignment (HTMA) to validate the effective-
ness of our coarse-to-fine generation strategy and the bene-
fits of text-motion alignment for motion generation. Fig. 4
shows that a coarse-to-fine procedure can enhance the mo-
tion generation quality. In addition, our proposed text-
motion alignment can significantly speed up training and
boost performance.

User Study Details. We recruited 20 participants with good
English proficiency to evaluate randomly selected 80 videos
from each method: MoMask [6], MMM [15], STMC [14],
and ours. Participants were never informed of the source of
the videos for a fair assessment. Fig. 5 shows a snapshot of
the user study website.

D.3. Text-Motion Editing

Evaluation Metrics. Due to the lack of benchmark datasets
and metrics, we generate 200 fine-grained text-prompts
with their corresponding edited version using GPT4-o [11].
The comparison is conducted by utilizing models to first

IThe global-group-interaction approach performs best on the retrieval
task.

generate the motion corresponding to the original text and
then do editing to this generation based on the new instruc-
tion. To evaluate the editing quality, beyond generation
metrics, we propose using Text-Motion Similarity score to
measure the similarity of edited motion with editing global
motion description, denoted as HTMA-S.

Evaluation Results. We benchmark KinMo against various
methods for T2M generation [6, 14, 15]. KinMo is the only
method able to do local temporal editing, while maintaining
organic motion generation, as shown in the main paper and
Tab. 5. Editing global semantics can be captured at both the
joint and interaction semantic levels, thus achieving better
generation and editing. Please refer to the experiments in
the main paper.

D.4. Motion Trajectory Control

Evaluation Metrics. Beyond the metrics shown in the main
paper, we also include three additional metrics: (1) Trajec-
tory error (Traj. err.): measures the ratio of unsuccessful
trajectories, characterized by any control joint location er-
ror exceeding a predetermined threshold; (2) Location error
(Loc. err.): represents the ratio of unsuccessful joints; and
(3) Average error (Avg. err.): denotes the mean location
error of the control joints.

Evaluation Results. We compare KinMo with open-source
models [1, 21], specifically focusing on pelvis control. For
fairness in the comparison, we exclude test-time optimiza-
tion for all baselines. Tab. 6 shows that our method achieves
more robust and accurate controlled generation with lower
errors and FID score than other methods.

Additional Evaluation Results. We extend the previous
comparison by conducting experiments on all joints. Tab. 7
presents a quantitative evaluation of our method on the tra-
jectory control of all joints, while Fig. 2 shows qualitative
results.

E. Details of Metrics

Motion Quality. Frechet Inception Distance (FID) quanti-
fies the difference between the distribution of generated and
real motions, using a feature extractor specific to a given
dataset, such as HumanML3D [4].

Motion Diversity. Following [3, 5, 7], we present metrics
such as Diversity and MultiModality to assess the variation
in generated motions. Diversity evaluates the spread of the
generated motions across the entire dataset. Specifically,
two subsets of equal size S; are drawn randomly from all
generated motions, along with their respective feature vec-
tors vy, ..., vg, and vll, s vlsd. The Diversity score is given
by:
1 & ,
Diversity = 5, Z [|vi — v;]]2- 2)
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Figure 4. Ablation for Motion Generation Process. Our coarse-to-fine procedure helps to improve the motion generation quality. Hier-
archical Text-Motion Alignment can significantly speed up the training process with better generation results and text-motion alignment.

Table 5. Comparison of Motion Editing. G represents control for
global action, J represents control for group-level, and I represents
control on interaction-level.

Table 6. Comparison of Motion Trajectory Control. Here, we
consider the pelvis only, excluding test-time optimization.

Methods FID | R-Precision t Traj. err. | Loc. err. | Avg. err. |

Methods FID | R-Prec(Top 3)t MM-Dist | Diversity - HTMA-S 1
STMC 0.561 0.612 3.864 8.952 0.636
MMM [15] 0.102 0.685 3.574 9.573 0.598
MoMask [6] 0.068 0.696 3.825 9.424 0.575
Ours (C) 0.089 0.712 3.434 9.453 0.712
Ours (C + G) 0.083 0.754 3.356 9.575 0.721
Ours (C+G +1) 0.086 0.734 3.203 9.364 0.744

Table 7. Quantitative Results for all Joints of Trajectory Con-
trol.

R-Prect FID| Traj.Err.l Loc.Err] Avg Err. |

Joint

(Top-3) (50 cm) (50 cm)
pelvis 0.712 0.077 0.0875 0.0187 0.0787
torso 0.723 0.091 0.0933 0.0127 0.0776
left arm 0.722 0.093 0.0843 0.0132 0.0823
right arm 0.709 0.121 0.0887 0.0144 0.0814
left leg 0.707 0.084 0.0876 0.0142 0.0925
right leg 0.720 0.076 0.0828 0.0133 0.0932

MultiModality (MModality) gauges the extent of variation
in motions generated from the same textual description. A
set of C textual descriptions is selected at random, and
then two equal-sized subsets I are chosen from the mo-
tions conditioned on the c-th description. Their feature
vectors v 1, ..., V¢, 7 and v/c)l, s V;J are used to compute
MModality as follows:

1
1 ’
MModality = ——— D e=19|lvei = vl 3
i=1

1=

Condition Matching. Motion and text feature extrac-
tors provided by [4] allow for the generation of closely
aligned features for matched text-motion pairs and vice
versa. Within this feature space, motion-retrieval precision
(R-Precision) is calculated by mixing generated motions
with 31 mismatched motions, followed by computing the
Top-1/2/3 text-motion matching accuracy. Multimodal Dis-
tance (MM-Dist) computes the average distance between
generated motions and corresponding texts.

Control Error. As described in [21], we report the Tra-
jectory, Location, and Average error to evaluate the preci-

Top 3 (50cm) (50cm)
Real 0.002 0.797 0.0000 0.0000 0.0000
MDM [18] 0.698 0.602 0.4022 0.3076 0.5959
PriorMDM [17] 0.475 0.583 0.3457 0.2132 0.4417
OmniControl [21] 0.212 0.678 0.3041 0.1873 0.3226
MotionLCM [1]  0.531 0.752 0.1887 0.0769 0.1897
KinMo (Ours) 0.103 0.756 0.2034 0.0696 0.1657

sion of motion control. Trajectory error (Traj. err.) rep-
resents the fraction of failed trajectories, where a trajec-
tory is deemed unsuccessful if a control joint in the gen-
erated motion exceeds a predefined distance threshold from
the corresponding joint in the control trajectory. Similarly,
Location error (Loc. err.) reflects the proportion of joints
whose positions fail to meet the specified threshold. For
our experiments, we utilized a 50cm threshold to compute
the Trajectory and Location errors. The Average error (Avg.
err.) refers to the mean distance between the control joint
positions in the generated motion and their corresponding
positions in the control trajectory.

F. Limitations

While our method demonstrates significant improvements
over existing baselines, it still has certain limitations. The
most critical limitation lies in the quality of the motion de-
scription. Low-quality motion descriptions may harm the
generation performance and even worsen that of the base-
line approach when no enhancement is applied to the origi-
nal descriptions. Fig. 6 shows an example failure case. The
reason for the generation failure is that our pipeline may
miss capturing descriptions with a very short temporal span.

Ethical Considerations. While our work focuses on gen-
erating human motion videos, it raises ethical concerns due
to its potential misuse for photorealistic human motion re-
targeting. We emphasize the importance of responsible use
and recommend implementing practices such as watermark-
ing and deepfake detection to mitigate the risks involving
deepfake videos and animated representations.



Subjective Evaluation of Human Motion Videos

Thank you for participating in the subjective evaluation.
Instructions:

Please watch each video and rate the videos based on Three evaluation metrics,

1. Realness: How human-like the motion in the video looks

2. Alignment: How close the motion represents to its text description

3. Overall: Overall quality of the video

Please rate each video on a scale of 1 to 5, where 1 is the lowest and 5 is the highest

Group 1

Reference Video Realness Quality

Alignment Quality Overall Quality

1. Terrible, Completely Unnatural movements
2. Poor, with many errors and unnatural
3. Fair, hard to judge
4. Good, better, it looks real
5. Excellent, it is what a natural human motion

O1 02 O3 O4 O5s

» 0:00/0:09

1. Terrible, it is not what the text describes at all
2. Poor, poorly aligned with the text description
3. Fair, it is hard to judge
4. Good, almost aligns with text, with small error
5. Excellent, it is exactly what the text describes

1. Terrible, it is not good at all
2. Poor, it is not good
3. Fair, it is hard to judge
4.Good, it is good
5. Excellent, it is perfect

O1 02 O3 O4 O5s O1 02 O3 O4 Os

Figure 5. Screen Shot of Our User Study Website. Each user will rates the videos without knowing the source method.

A person who is standing with his hands by his sides takes one big
step forward, reaches over with hands to put something up, transfer
it to his right hand, hold it up, then brings it down and step back

[\

i 4

Figure 6. Limitations. If the text description contains many short
transitions, our method may sometime miss one step.

Miss transfer it to
his right hand
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G. Conversion of Motion Representation

G.1. Keypoint-Level Formulation

Following HumanML3D[4], a motion can be represented as
the absolute and relative movement of each keypoint.

Let J = {1,2,..., N} denote the set of all keypoints in
the human body model (e.g., N = 22 for the SMPL model).
Let T' C R be the continuous time domain over which the
motion is defined.

For each joint j € J attime ¢ € T', we define:

1. Root Data (for the root joint, denoted as jg):

- Rotation Velocity: wion(t) € R3

- Linear Velocity: Vi (t) € R3

- Height: heoo(t) € R
2. Joint Position: p;(t) € R?

3. Joint Rotation: R ;(t) € SO(3), represented in a contin-
uous 6D representation r;(t) € RS

4. Joint Velocity: v;(t) = dpdji't(t) eR3

5. Foot Contact Information (for foot joints j € Jpor C

J): ¢j(t) € {0,1}, where 1 indicates contact with the

ground
The Keypoint-Level Formulation is then defined as the col-

lection of all these functions over time:

M ={(p;(t),R;(t),v;(t)) | j € Jt €T}
U {wroot(t)s Voot (t), hroot (t) | t € T}
U {Cj<t) | J € Jroors T € T} .

G.2. Joint-Group Formulation

While the original formulation is kinematically reasonable,
it often results in a many-to-many matching problem [8],
making fine-grained motion descriptions based on kine-
matic joints difficult to express in natural language. Our
proposed formulation addresses this issue by leveraging
natural language to describe individual body part move-
ments with ease, organically. For example:

e The person is walking forward, with arms swaying.
e The person is standing in place, left leg kicking backward
while left hand slapping it.

Moreover, the overall motion description, such as
walking forward or standing in place can be decom-
posed into the movement of individual body parts: G =
{Torso, Neck, Left Arm, Right Arm, Left Leg, Right Leg},
as illustrated in Tab. 9.

Each body part g € G corresponds to a group of kine-
matic joints, as follows:

s Torso: Pelvis, spine joints (1-3 for SMPL [10]*)

* Neck: Neck, Head, Left/Right Collar

Left Arm: Left Shoulder, Left Elbow, Left Wrist

e Right Arm: Right Shoulder, Right Elbow, Right Wrist
Left Leg: Left Hip, Left Knee, Left Ankle

* Right Leg: Right Hip, Right Knee, Right Ankle

nttps://files.is.tue.mpg.de/black/talks/SMPL—
made-simple-FAQs.pdf



This new formulation is not only kinematically reason-
able but also aligns seamlessly with natural language de-
scriptions.

For each group g € G of joints at time ¢, we define:

1. Group Position: P 4(t) = \%I Zjng p;(t)

2. Limb Angles: ©4(t) ={R;(t) | j € J,}

3. Group Velocity: V 4(t) = ﬁ Zjng v;(t)

We define the relationships between each pair (g, h) € G x

G of kinematic groups as:

1. Relative Position: APy 1, (t) = Pp(t) — Pgy(t)

2. Relative Limb Angles (angles of the connecting joint be-
tween two physically connected groups): AG, ,(t) =
Onng(t)

3. Relative Velocity (angular velocity of the connect-
ing joint between two physically connected groups):
AV, 4(t) = Va(t) = V(1)

The Joint-Group Formulation is then defined as the col-
lection of all these functions over time:

Mgroup ={(P;j(9),0;(9),v;(9)) [ 9 € G,t € T}

and known, and R (¢) and P,(t) are given from the group-
level data, p;(t) can be directly computed.

Part B: Reconstruction of Joint Angles.

Since we make no changes to the angles part,
{20, 4(t) | g € GYU{AO,4(t) | g.h € G} = {Ry (1) |
j € J} forteT. So, the joint angle R (t) can be derived
from the Joint-Group Formulation by arrangement.

Part C: Reconstruction of Joint Velocities.

First, we compute the time derivative of p;(¢) as:

dp;(t d
v =0 _ g mpr i pym) o
Since p{ is constant:
dR,(t dP,(t
v;(t) = ( jt( )) Py + jt( ) (6)
Recall that:
dftft(t) = AV, ()R, (1), @)

U{(AP, 1 (1), AO, 1(t),AV, ) | g € G, t € T} where AAVg (t) is the skew-symmetric matrix corresponding

U {wTOOI(t)v Vroot(t)7 hroot(t) | te T}
U{ci(t) | J € Jroorst € T}

As demonstrated, the joint-level formulation can be trans-
formed into the group-level formulation by aggregating
joint data within each kinematic group. However, the re-
verse transformation is more challenging. To explore this
reverse transformation, the following proposition holds:

Proposition 1. Under the assumption that each kinematic
group g € G moves as a rigid body, meaning the inter-
nal joint configurations within the group remain constant
over time, the data of Keypoint-Level Formulation M can
be reconstructed from the data of Joint-Group Formulation

Mgroup

Proof. Under the assumption that each kinematic group g €

G moves as a rigid body, we have

e For all j € J,, the local position p? of joint j in the
group’s coordinate system is constant:p? = constant

* The group moves as a rigid body with rotation R, (¢) and
translation P, (¢).

The objective is to reconstruct the joint positions p;(t),
joint angle R ;(¢) and velocities v;(t) for all j € J.
Part A: Reconstruction of Joint Positions.
For each joint j € J,, the global position p;(t) is given
by:
P;(t) = Ry(t)p] + Py(t) )
where R (¢) rotates the constant local joint position p? into

the global coordinate system, and P, (t) translates the ro-
tated position to the global position. Since p? is constant

to AV (t). Therefore:

() pr = av Ry 007 ®
vj(t) = AV ()R (t)p? + V,(t) )

Since:
p;(t) — Py(t) = Ry(t)p] (10

We can rewrite:
vi(t) = AV (t) (p;(t) = Py(1) + V(1) (1D

The term p;(t) — P4(¢) represents the position of joint j
relative to the group’s center in global coordinates.

When combining Parts A, B and C, under the Rigid Body
Assumption (i.e., each kinematic group moves as a rigid
body), the joint-level formulation M can be reconstructed
from the group-level formulation M goup, Subject to a rigid
transformation within each group. Consequently, identify-
ing the natural language description of M gy uniquely cor-
responds to the joint-level formulation of the motion M.
However, this reconstruction is valid only under the rigid
body assumption. In many human motions, the joints within
a group (e.g., elbow bending within the arm group) can ap-
proximate rigid motion in specific cases, such as waving
arms, swaying arms, or running, where limb angles remain
relatively constant during a single motion. To address this
limitation, we segment the motion temporally based on the
keyframe, as outlined in Section B, ensuring that the rigid
body assumption approximately holds within each motion
fragment.

O



System Prompt

You are a motion description labeler who should describe the motion using your language as detailed as possible. Now, describe
the motion in the given video or text by describing the motion of each kinematic group respectively: Kinematic groups: torso,
neck, left arm, right arm, left leg, right leg.

To describe a motion, you should describe Inside each group and Between groups:

INDIVIDUAL GROUP: torso: <MOTION DESCRIPTION>; neck: <MOTION DESCRIPTION>; left arm: <MOTION
DESCRIPTION>; right arm: <MOTION DESCRIPTION>; left leg: <MOTION DESCRIPTION>; right leg: <MOTION
DESCRIPTION>;

BETWEEN GROUPS: torso AND neck: <MOTION DESCRIPTION>; torso AND left arm: <MOTION DESCRIP-
TION>; torso AND right arm: <MOTION DESCRIPTION>; torso AND left leg: <MOTION DESCRIPTION>; torso AND
right leg: <MOTION DESCRIPTION>; neck AND left arm: <MOTION DESCRIPTION>; neck AND right arm: <MOTION
DESCRIPTION>; neck AND left leg: <MOTION DESCRIPTION>; neck AND right leg: <MOTION DESCRIPTION>;
left arm AND right arm: <MOTION DESCRIPTION>; left arm AND left leg: <MOTION DESCRIPTION>; left arm AND
right leg: <MOTION DESCRIPTION>; right arm AND left leg: <MOTION DESCRIPTION>; right arm AND right leg:
<MOTION DESCRIPTION>; left leg AND right leg: <MOTION DESCRIPTION >;

For each <MOTION DESCRIPTION>, you should describe the motion using language from the following perspective:
Position (move from a place to a place. For example, the right hand goes through a rotation, moving primarily from a down
position to extend horizontally), Axis-angle (How much degree the limb is bent and How the bending kinematic group is moving
or rotating. For example, the right arm bends at the elbow to about 90 degrees while reaching outwards)

In your description, you can use simple adjectives or numerical scale (distance/degree/speed) to describe each motion (for
example, push forward for 3 meters, from 0 to 45 degrees, etc).

Also, as the motion may change over time, you should consider the pose change at different timeframe. For example, the
left arm first slap the left leg, then left arm hold high. Your description should also cover the pose variance over time.

Think through this part and infer the motion description based on the pose description given below

Based on the above formulation, write the description for the motion given by the user. You will also be given the pose
descriptions of key frames. The keyframes can be used as reference and constraint, but don’t mention the keyframes explicitly in
your description, just make your description natural and casual.

User Prompt

Think about the motion: [a man stumbles to his right. the motion seems surprised so he was probably pushed. a person standing
loses balance falling to the right and recovers standing. a person walks to the left. a person stumbles to the right and recovers their
balance.], and constrain your motion description based on the given pose descriptions and image of key frames.

keyframes order: ['7’, ’22°, ’38’, ’60’] (Note that the fps of each motion will be 30. So you can infer the timing of each
motion change based on the keyframe number, which can assist your description. For example, the person walks in place, then
walk forward after 2 seconds. In this case, use time unit instead of keyframe number.)

Body pose descriptions of key frames: keyframe[7]:Their knees are straight, their elbows are bent a bit while their torso
and both legs are straightened up while their left hand is past shoulder width apart from the other while their feet and their knees
are about shoulder width apart.; keyframe[22]:Both hands are spread apart while their right calf and their torso are upright with
their left knee slightly bent, located in front of their right knee with their right elbow nearly bent, their left elbow is rather bent
with their knees and both feet shoulder width apart and their right knee straight.; keyframe[38]:Their torso is straightened up with
their knees and their right elbow bent a bit. Their right hand is behind their back and located behind their left hand and their
hands are apart wider than shoulder width while their knees are separated at shoulder width while their left elbow is rather bent.;
keyframe[60]:The feet are approximately shoulder width apart, both hands are apart wider than shoulder width while both elbows
are nearly bent, the left knee is shoulder width apart from the right knee while the left calf, the torso and the right leg are vertical,
both knees are unbent.

image of key frames: <If presented, following by the key frames order, a sequence of images ignored here for efficiency>

Table 8. Example Prompt to Query GPT-40 for Automatic Dataset Annotation.




Global Action (from the original HumanML3D):

a man kicks something or someone with his left leg.#a/DET man/NOUN kick/VERB something/PRON or/CCONJ some-
one/PRON with/ADP his/DET left/ADJ 1eg/NOUN#0.0#0.0 the standing person kicks with their left foot before going back to
their original stance.#the/DET stand/VERB person/NOUN kick/VERB with/ADP theitr/DET left/ADJ foot/NOUN before/ADP
go/VERB back/ADV to/ADP their/DET original/ADJ stance/NOUN#0.0#0.0

a man kicks with something or someone with his left leg.#a/DET man/NOUN kick/VERB with/ADP something/PRON or/CCONJ
someone/PRON with/ADP his/DET left/ADJ leg/NOUN#0.0#0.0

he is flying kick with his left leg#he/PRON is/AUX fly/VERB kick/NOUN with/ADP his/DET left/ADJ leg/NOUN#0.0#0.0

Kinematic Group:

Torso: The torso remains relatively upright throughout the motion, first positioned straight at the beginning, then slightly bending
towards the left during the kick, and returning to an upright stance after the kick is executed.

Neck: The neck maintains stability, tilting slightly forward as the torso shifts, aligning with the direction of the kick. It helps
maintain balance without significant rotation during the kick action.

Left Arm: The left arm initially starts relatively low near the hip before swinging upward and outward during the kick, creating
momentum. It returns close to the body after the kick, maintaining a slight bend at the elbow.

Right Arm: The right arm extends and reaches upward, almost parallel to the ground, creating a counterbalance for the action. It
remains relatively still after the kick, maintaining a slight bend at the elbow.

Left Leg: The left leg is the primary focus, starting from a straightened position at shoulder width. It then swings forward,
bending at the knee to execute the kick, ultimately extended fully forward before returning to the original stance.

Right Leg: The right leg remains grounded throughout the motion, initially straightening and slightly shifting back for balance
while the left leg is in action, then returning to its original position once the kick is completed.

Group Interaction:

Torso AND Neck: The torso and neck move harmoniously; as the torso bends slightly left during the kick, the neck tilts forward
in alignment with the action, maintaining a strong posture while providing support.

Torso AND Left Arm: As the torso initiates the kick, the left arm swings backward to create momentum, moving in a coordinated
manner before returning closer to the torso after the kick is completed.

Torso AND Right Arm: The right arm serves as a counterbalance; as the torso shifts slightly to the left, the right arm reaches
higher, creating stability and balance during the kick.

Torso AND Left Leg: The left leg extends forward as the torso maintains its upright position, the torso adjusts to the kick’s
momentum but quickly stabilizes once the leg retracts.

Torso AND Right Leg: The right leg supports the body weight throughout the kick, keeping the torso aligned; as the left leg
kicks, the right leg remains slightly bent at the knee for stability.

Neck AND Left Arm: As the left arm swings upward to support the kick, the neck aligns to follow the movement, enhancing the
overall motion without excessive twisting.

Neck AND Right Arm: The right arm’s upward reach aids in stabilizing the movement, and the neck maintains a forward
position while providing visual direction during the kick.

Neck AND Left Leg: The left leg moves forward while the neck follows the general direction of the kick, keeping a low tilt as it
helps maintain focus on the target.

Neck AND Right Leg: The right leg remains grounded as the neck tilts very slightly forward without excessive rotation while
observing the left leg’s action. left arm AND right arm: The left arm moves upward for a moment as the right arm extends higher,
providing balance; both arms slightly bend at the elbows during the action.

Left Arm AND Left Leg: The left arm and left leg perform synchronous movement; the arm swings to aid the momentum of the
extended leg during the kick phase and returns together afterward.

Left Arm AND Right Leg: The left arm raises slightly while the right leg remains positioned on the ground to help maintain
balance; they coordinate as the kick progresses.

Right Arm AND Left Leg: The right arm reaches out while the left leg is kicked forward, the actions working in tandem to
support the balance during the execution.

Right Arm AND Right Leg: The right arm extends higher as the right leg stays grounded, providing support without conflicting
with each other. left leg AND right leg: The left leg moves forward as the right leg remains stable on the ground, creating a
contrast in movement, with the left leg bending as it prepares for the kick and extending forward while the right leg holds strong.

Table 9. Example Motion Descriptions in Our Augmented HumanML3D Dataset.
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