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1. Experiments Setting

Table S1. The statistics of four CZSL datasets.

Dataset Train Val Test
A O Ys X Ys Yu X Ys Yu X

MIT-States 115 245 1262 30338 300 300 10420 400 400 12995
UT-Zappos 16 12 83 22998 15 15 3214 18 18 2914

C-GQA 413 674 5592 27000 1252 1040 7000 888 923 5000
VAW-CZSL 440 541 11175 72203 2121 2322 9524 2449 2470 10856

Datasets. We evaluated the model’s performance on four
datasets: UT-Zappos [25], MIT-States [6], C-GQA [15],
and VAW-CZSL[22]. UT-Zappos is a large shoe dataset
consisting of 16 attributes and 12 objects. MIT-States is
a diverse collection of everyday objects, featuring 115 at-
tributes and 245 objects. C-GQA is the largest dataset for
the CZSL task, derived from the GQA dataset [5], contain-
ing 453 attributes and 870 objects. VAW-CZSL is a new,
large-scale real-world attribute dataset specifically designed
for Compositional Zero-Shot Learning (CZSL). It contains
a diverse collection of complex attribute-object composi-
tions, with 440 attributes and 541 objects, reflecting realis-
tic visual scenarios. We followed the dataset split standards
from previous studies[16, 17] and the statistics are provided
in Tab. S1.

Implementation Details. To ensure fairness, we adopt
the parameter settings established by previous research, uti-
lizing the pre-trained CLIP ViT-L/14 model [20] as our im-
age/text encoder. For the AD-CA and OD-CA modules,
a single layer of Cross-Attention is used. During training,
we use the Adam optimizer in conjunction with a StepLR
learning rate scheduler, where the learning rate decays by a
factor of 0.5 every 3 epochs. For the UT-Zappos and MIT-
States datasets, the learning rate is 5 × 10−4 and weight
decay is 1× 10−5; for the C-GQA and VAW-CZSL dataset,
the learning rate is 5 × 10−5 with the same weight decay.
Training is conducted for 20 epochs in total. All training
and testing are conducted on NVIDIA A800 GPUs.

2. More Quantitative Results

We further report more comprehensive comparison results
in Tab. S2 and Tab. S3, covering both ResNet18-based
methods, including LE+ [14], TMN [18], SymNet [12],
CompCos [8], Co-CGE [21], SCEN [10], CANet [23], and
CoT [9], as well as CLIP-based approaches such as CLIP
[20], CoOp [26], CSP [17], PCVL [24], DFSP [13], DLM
[3], ProLT [7], PLID [1], CDS-CZSL [11], and Trokia [4].

3. Parameter Sensitivity Analysis
We conducted hyperparameter analysis of the loss function
on the UT-Zappos dataset. To ensure balanced learning be-
tween textual prototypes and visual proxies, we set the same
hyperparameter α for both Lt and Lv , while the hyperpa-
rameter for Lkl was set to β. For the three-branch predic-
tion, the attribute and object branches share the same hy-
perparameter γao, while the composition branch uses the
hyperparameter γc:

L = α(Lt + Lv) + βLkl (1)

Lt + Lv = γao(La
t + La

v + Lo
t + Lo

v) + γc(Lc
t + Lc

v) (2)

To evaluate the robustness of our model, we varied the
parameters α, β, γao, and γc within the range {0.1, 0.5, 1,
5, 10}. The results show that all hyperparameters achieve
optimal performance when set to 1, suggesting that textual
prototypes and visual proxies complement each other and
reach optimal performance when balanced. Despite fluc-
tuations in the hyperparameters within a certain range, our
model remains stable and effective, with accuracy ranging
from 45.8% to 47.9%, significantly surpassing the state-
of-the-art method Troika [4], as shown in Fig. S1. This
minimal variation, despite substantial parameter changes,
demonstrates the stability and robustness of our model.

4. Additional Ablation Study
We evaluate our model’s performance on the UT-
Zappos[25] and MIT-States[6] datasets by initializing the
visual proxies with text feature derived from various pre-
trained language models, as summarized in Tab. S4. Specif-
ically, we examine the effects of initializing with text fea-
tures from CLIP[20], BERT [2], GPT[19], and random ini-
tialization. The experimental results indicate that using
CLIP text features to initialize the visual proxies achieves
the best performance.

This outcome can be attributed to the unique properties
of CLIP. As a vision-language model trained on large-scale
paired image-text datasets, CLIP has learned a strong corre-
spondence between visual and textual representations. This
cross-modal alignment allows its text features to serve as
an effective starting point for visual prototypes, facilitating
seamless integration with visual features.

In contrast, models like BERT and GPT are pre-trained
exclusively on natural language tasks. While they provide
semantically rich text features, their lack of alignment with
the visual modality limits their effectiveness for initializ-
ing visual prototypes. Additionally, random initialization



Table S2. The experimental results for Without-CLIP and With-CLIP methods under the closed-world setting. The best performances are
highlighted in bold.

Method Venue C-GQA UT-Zappos MIT-States
S U HM AUC S U HM AUC S U HM AUC

Without CLIP
LE+[14] CVPR’17 18.1 5.6 6.1 0.8 53.0 61.9 41.0 25.7 15.0 20.1 10.7 2.0

TMN[18] ICCV’19 23.1 6.5 7.5 1.1 58.7 60.0 45.0 29.3 20.2 20.1 13.0 2.9
SymNet[12] CVPR’20 26.8 10.3 11.0 2.1 49.8 57.4 40.4 23.4 24.2 25.2 16.1 3.0
CompCos[8] CVPR’21 28.1 11.2 12.4 2.6 59.8 62.5 43.1 28.1 25.3 24.6 16.4 4.5
Co-CGE[21] TPAMI’22 28.1 11.9 12.7 2.8 58.2 63.3 44.1 26.1 27.8 25.2 17.5 5.1

SCEN[10] CVPR’22 29.3 11.9 12.7 2.8 63.5 63.1 47.8 29.1 29.9 25.2 18.4 5.3
CANet[23] CVPR’23 30.0 13.2 14.5 3.3 61.0 66.3 47.3 33.1 29.0 26.2 17.9 5.4

CoT[9] ICCV’23 33.1 16.6 16.6 4.5 - - - - 30.8 26.8 19.6 6.2
With CLIP

CLIP[20] ICML’21 7.5 25.0 8.6 1.4 15.8 49.1 15.6 5.0 30.2 46.0 26.1 11.0
CoOp[26] IJCV’22 20.5 26.8 17.1 4.4 52.1 49.3 34.6 18.8 34.4 47.6 29.8 13.5

CSP[17] ICLR’23 28.8 26.8 20.5 6.2 64.2 66.2 46.6 33.0 46.6 49.9 36.3 19.4
PCVL[24] arXiv’22 - - - - 64.4 64.0 46.1 32.2 48.5 47.2 35.3 18.3

DFSP(i2t)[13] CVPR’23 35.6 29.3 24.3 8.7 64.2 66.4 45.1 32.1 47.4 52.4 37.2 20.7
DFSP(BiF)[13] CVPR’23 36.5 32.0 26.2 9.9 63.3 69.2 47.1 33.5 47.1 52.8 37.7 20.8
DFSP(t2i)[13] CVPR’23 38.2 32.0 27.1 10.5 66.7 71.7 47.2 36.0 46.9 52.0 37.3 20.6

DLM[3] AAAI’24 32.4 28.5 21.9 7.3 67.1 72.5 52.0 39.6 46.3 49.8 37.4 20.0
ProLT[7] AAAI’24 39.5 32.9 27.7 11.0 66.0 70.1 49.4 36.1 49.1 51.0 38.2 21.1
PLID[1] ECCV’24 38.8 33.0 27.9 11.0 67.3 68.8 52.4 38.7 49.7 52.4 39.0 22.1

CDS-CZSL[11] CVPR’24 38.3 34.2 28.1 11.1 63.9 74.8 52.7 39.5 50.3 52.9 39.2 22.4
Troika[4] CVPR’24 41.0 35.7 29.4 12.4 66.8 73.8 54.6 41.7 49.0 53.0 39.3 22.1

VP-CMJL(Ours) 46.0 40.2 34.9 16.3 71.9 76.3 58.5 47.9 51.8 52.6 40.4 23.3

Table S3. The experimental results for Without-CLIP and With-CLIP methods under the open-world setting. The best performances are
highlighted in bold.

Method Venue C-GQA UT-Zappos MIT-States
S U HM AUC S U HM AUC S U HM AUC

Without CLIP
LE+[14] CVPR’17 19.2 0.7 1.0 0.1 60.4 36.5 30.5 16.3 14.2 2.5 2.7 0.3

TMN[18] ICCV’19 - - - - 55.9 18.1 21.7 8.4 12.6 0.9 1.2 0.1
SymNet[12] CVPR’20 26.7 2.2 3.3 0.4 53.3 44.6 34.5 18.5 21.4 7.0 5.8 0.8
CompCos[8] CVPR’21 28.4 1.8 2.8 0.4 59.3 46.8 36.9 21.3 25.4 10.0 8.9 1.6
Co-CGE[21] TPAMI’22 28.7 1.6 2.6 0.4 60.1 44.3 38.1 21.3 26.4 10.4 10.1 2.0

With CLIP
CLIP[20] ICML’21 7.5 4.6 4.0 0.3 15.7 20.6 11.2 2.2 30.1 14.3 12.8 3.0
CoOp[26] IJCV’22 21.0 4.6 5.5 0.7 52.1 31.5 28.9 13.2 34.6 9.3 12.3 2.8

CSP[17] ICLR’23 28.7 5.2 6.9 1.2 64.1 44.1 38.9 22.7 46.3 15.7 17.4 5.7
PCVL[24] arXiv’22 - - - - 64.6 44.0 37.1 21.6 48.5 16.0 17.7 6.1

DFSP(i2t)[13] CVPR’23 35.6 5.6 9.0 1.9 64.3 53.8 41.2 26.4 47.2 18.2 19.1 6.7
DFSP(BiF)[13] CVPR’23 36.5 7.6 10.6 2.4 63.5 57.2 42.7 27.6 47.1 18.1 19.2 6.7
DFSP(t2i)[13] CVPR’23 38.2 7.2 10.4 2.4 66.8 60.0 44.0 30.3 47.5 18.5 19.3 6.8

PLID[1] ECCV’24 39.1 7.5 10.6 2.5 67.6 55.5 46.6 30.8 49.1 18.7 20.4 7.3
CDS-CZSL[11] CVPR’24 37.6 8.2 11.6 2.7 64.7 61.3 48.2 32.3 49.4 21.8 22.1 8.5

Troika[4] CVPR’24 40.8 7.9 10.9 2.7 66.4 61.2 47.8 33.0 48.8 18.4 20.1 7.2
VP-CMJL(Ours) 46.0 11.5 15.5 4.6 71.9 66.6 54.5 41.4 51.8 19.9 22.0 8.3



Figure S1. Sensitivity analysis on loss weighting coefficients α, β γao and γc on the UT-Zappos.
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Figure S2. Qualitative results on UT-Zappos Dataset. The term ’w/o vp’ refers to the text-prototype-based method, while the green font
indicates correct labels and the red font indicates incorrect labels.

Table S4. Results on UT-Zappos and MIT-States datasets visual
proxies with different initializations.

Model UT-Zappos MIT-States
S U HM AUC S U HM AUC

CLIP[20] 71.9 76.3 58.5 47.9 51.8 52.6 40.4 23.3
BERT[2] 66.2 74.5 56.9 42.6 51.8 51.1 39.7 22.6
GPT[19] 60.31 72.24 52.0 37.0 50.8 51.3 38.4 21.8
Random 61.58 71.76 52.13 37.52 49.5 51.55 37.88 21.3

introduces significant uncertainty during training, making it
more difficult for the model to converge quickly and learn
optimal visual proxies.

We also observe that datasets with more similar compo-
sitions, such as UT-Zappos, are more sensitive to the ini-
tialization of visual proxies. These datasets require fine-
grained visual proxies to accurately capture distinguishing
features, amplifying the importance of effective proxies ini-
tialization.

Therefore, we adopt CLIP text features for initializing
visual proxies to accelerate convergence and facilitate the
learning of more effective and precise visual representa-
tions.

5. Additional Qualitative Visualization
To provide a more intuitive demonstration of the effective-
ness of dual-modal prototypes, we visualize the image fea-
ture clustering performance and selected cases on the UT-
Zappos dataset.

Attribute: broken

OursCLIPOrigin

Figure S3. Comparison of Image Feature Clustering Performance
between Baseline and Our Model on the UT-Zappos Dataset.

5.1. Case Study Analysis
We further visualize the qualitative results of the model on
the UT-Zappos dataset in Fig. S2. Specifically, we present
both successful and failure cases of the proposed VP-
CMJL model, along with those from the text-prototype-



based method, denoted as ’w/o vp’. The results clearly
show that VP-CMJL can accurately distinguish between
visually similar compositions, such as ’Suede Boots.Mid-
Calf’ and ’Suede Boots.Ankle’, whereas the text-prototype-
based method struggles to differentiate compositions with
similar visual appearances. This demonstrates that VP-
CMJL effectively learns fine-grained compositional fea-
tures. In failure cases, although the model does not al-
ways correctly identify the complete composition, it often
successfully classifies at least one of the primitives. Fur-
thermore, we employ Grad-CAM to visualize the model’s
ability to capture fine-grained classification cues. As shown
in Fig. S3, for fine-grained attributes such as ’broken’, our
model is able to localize more precise visual cues compared
to CLIP, thereby enhancing category discriminability.

5.2. Visualization of Image Feature Clustering
We first generate a t-SNE visualization of image features
for six categories from the UT-Zappos dataset, as depicted
in Fig. S4. Compared to the baseline, our model signifi-
cantly reduces intra-class distances and increases inter-class
distances. This demonstrates that the proposed visual proto-
types effectively enhance feature learning within the visual
modality.
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Patent.Leather, 
Shoes.Heels

Suede, 
Shoes.Sneakers

Suede, 
Boots.Mid-Calf

Leather, 
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Suede, 
Slippers

Baseline Ours

Figure S4. Comparison of Image Feature Clustering Performance
between Baseline and Our Model on the UT-Zappos Dataset.
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