
Appendix

This appendix provides comprehensive technical details and
additional results for MagicMirror, encompassing dataset
preparation, architectural specifications, implementation,
and extensive experimental validations. We include ad-
ditional qualitative results and in-depth analyses to sup-
port our main findings. We strongly encourage readers

to examine the project page https://julianjuaner.
github.io/projects/Magic-Mirror/ for dynamic
video demonstrations. The following contents are orga-
nized for efficient navigation.
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A. Experiment Details

A.1. Training Data Preparation

Our training dataset is constructed through a rigorous pre-
processing pipeline, as illustrated in Fig. 8. For the image
pretrain data, we start downloading 5 million images from
LAION-face [53], then undergo strict quality filtering based
on face detection confidence scores and resolution require-
ments. The filtered subset of 107K images is then processed
through an image captioner [33], where we exclude images
containing texts. This results in a curated set of 50K high-
quality face image-text pairs. To enhance identity diversity,
we incorporate the synthetic SFHQ dataset [3]. To fit the
model output, we standardize these images by adding black
borders and pairing them with a consistent prompt template:
”A squared ID photo of ..., with pure black on two sides.”

This preprocessing ensures uniformity while maintaining
the dataset’s diverse identity characteristics.

For FFHQ [27], we leverage a state-of-the-art identity-
preserving prior PhotoMakerV2 [34] to generate synthetic
images of the same identity, but with different face poses.

We filter redundant identities using pairwise facial simi-
larity metrics, with prompts sampled from our 50K video
keyframe captions. We use the Pexels-400K and Mixkit
datasets from [35] for construction of image-video pairs.
The videos undergo a systematic preprocessing pipeline,
including face detection and motion-based filtering to en-
sure high-quality dynamic content. We generate video de-
scriptions using CogVLM video captioner [57]. Following
our FFHQ processing strategy, we employ PhotoMakerV2
to synthesize identity-consistent images from the detected
faces, followed by quality-based filtering.

A.2. Test Data Preparation

Face Images Preparation We construct a comprehensive
evaluation set for identity preservation assessment across
video generation models. Our dataset comprises 50 dis-
tinct identities across seven demographic categories: man,
woman, elderly man, elderly woman, boy, girl, and baby.
The majority of faces are sourced from PubFig dataset [30],
supplemented with public domain images for younger cate-
gories. Each identity is represented by 1-4 reference images
to capture variations in pose and expression.
Prompt Preparation Our test prompts are derived from
VBench [25], focusing on human-centric actions. For de-
tailed descriptions, we sample from the initial 200 GPT-
4-enhanced prompts and select 77 single-person scenar-
ios. Each prompt is standardized with consistent subject
descriptors and augmented with the img trigger word for
model compatibility. We assign four category-appropriate
prompts to each identity, ensuring demographic alignment.
For the ”baby” category, which lacks representation in
VBench, we craft four custom prompts to maintain evalu-
ation consistency across all categories.

A.3. Comparisons

ID-Animator [20] We utilize enhanced long prompts for
evaluation, although some undergo partial truncation due to
CLIP’s 77-token input constraint.

In our main comparisons Tab. 1, we evaluated ID-
Animator at a resolution of 480!720. This choice was
made to ensure that SD-based ID-Animator comparisons
used matching resolutions, thereby ensuring equal content
capacity—a decision justified by the inherent resolution in-
dependence of the UNet architecture. To provide a fair and
comprehensive evaluation, we additionally present some re-
sults at the default 512!512 resolution here in Tab. 4. These
results confirm that our comparisons remain robust and con-
sistent across different resolution settings.

Method Base Resolution txt-align→ FMinter
→ ID→ Smooth↑

ID-Animator SD1.5 (480, 720) 0.211 0.181 0.923 0.515
ID-Animator SD1.5 (512, 512) 0.217 0.179 0.921 0.501
MagicMirror CogVideoX (480, 720) 0.240 0.610 0.922 0.484

Table 4. ID-Animator resolution comparison.

https://julianjuaner.github.io/projects/Magic-Mirror/
https://julianjuaner.github.io/projects/Magic-Mirror/
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Figure 8. Detailed training data processing pipeline. Building upon Fig. 5, we illustrate comprehensive filtering criteria, prompt
examples, and processing specifications. The data flow is indicated by blue arrows, while filtering rules leading to data exclusion are
marked with red arrows.

ConsisID [69] We utilize the CogVideoX-5B[64] version.
Its base inference settings are aligned with those of our
model, and enhanced long prompts are employed to fully
leverage its capabilities.

CogVideoX-5B-I2V [64] For this image-to-video vari-
ant, we first generate reference images using PhotoMak-
erV2 [34] for each prompt-identity pair. These images,
combined with enhanced long prompts, serve as input for
video generation.

EasyAnimate [63] We evaluate using the same
PhotoMakerV2-generated reference images as in our

CogVideoX-5B-I2V experiments.

DynamiCrafter [60] Due to model-specific resolution re-
quirements, we create a dedicated set of reference images
using PhotoMakerV2 that conform to the model’s specifi-
cations.

In image-to-video baselines, through reference images
generated by enhanced prompts, we deliberately use origi-
nal short concise prompts for video generation. This choice
stems from our empirical observation that image-to-video
models exhibit a strong semantic bias when processing
lengthy prompts. Specifically, these models tend to prior-



CogVideoX-I2V：

A man playing golf

A focused man stands on a lush, emerald-green fairway, wearing a crisp white polo shirt, beige trousers, and a navy cap, with the sun casting a warm glow over the rolling hills. He is
playing golf. The camera captures a close-up of their hands gripping the club, showcasing the precision and concentration in their stance. As he swing, the club arcs gracefully
through the air, sending the golf ball soaring against a backdrop of clear blue sky and distant trees. The scene shifts to the golfer watching intently as the ball lands on the manicured
green, the flag fluttering gently in the breeze, embodying the serene yet competitive spirit of the game.

EasyAnimate-I2V：

A shirtless man climbing

A shirtless man with a lean, muscular build ascends a rugged cliff face, his skin glistening with sweat under the bright sun. His determined expression and focused gaze reveal his
concentration and skill as he navigates the challenging rock formations. The camera captures the intricate details of his movements, highlighting the tension in his muscles and the
precision of his grip. The backdrop of the scene is a vast, open sky, with the distant horizon hinting at the expansive landscape below. As he climbs higher, the play of light and shadow
across the rock surface adds depth and drama to the breathtaking ascent.

Figure 9. Impact of prompt length on image-to-video generation. We demonstrate how image-to-video models perform differently with
concise versus enhanced prompts. Frames with large artifacts are marked in red. First frame images are generated from enhanced prompts.

itize text alignment over reference image fidelity, leading to
degraded video quality and compromised identity preserva-
tion. This trade-off is particularly problematic for our face
preservation objectives. We provide visual evidence of this
phenomenon in Fig. 9.

A.4. Evaluation Metrics

Our evaluation framework combines standard video metrics
with face-specific measurements. From VBench [25], we
utilize Dynamic Degree for motion naturality and Overall
Consistency for text-video alignment. Video quality is as-
sessed using Inception Score from EvalCrafter [36]. For
facial fidelity, we measure identity preservation using facial
recognition embedding similarity [15] and temporal stabil-
ity through frame-wise similarity decay.

We propose a novel facial dynamics metric to address
the limitation of static face generation in existing meth-
ods. As shown in Fig. 10, we extract five facial landmarks
using RetinaFace [10] and compute two motion scores:
FMref measures facial motion relative to the reference image
(computed on aspect-ratio-normalized frames to eliminate
positional bias), while FMinter quantifies maximized inter-

Find
landmarks

Find
landmarks

Find
landmarks

FM!"# = 1.46

FM!"# = 0.28

Resize

Resize

Resize

Figure 10. Face Motion (FM) calculation. FMinter follows a sim-
ilar computation across consecutive video frames.

frame facial motion (computed on original frames to pre-
serve translational movements). This dual-score approach
enables a comprehensive assessment of facial dynamics.

Success rate & failcase analysis. Success rate metrics bet-
ter demonstrate reliability. Our additional experiments with
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Figure 11. Detailed implementation of Conditioned Adaptive

Normalization. We present the expanded architecture of ωcond (il-
lustrated in the unmasked region above) with comprehensive anno-
tations of input-output tensor dimensions at each transformation.

200 videos (50 prompts ! 4 seeds) compared MagicMir-
ror with identity preservation baselines on success rates for
face recognition, identity check, motion, and text align-
ment. MagicMirror achieves improved SR across most
dimensions, though failcase analysis reveals motion qual-
ity remains the primary limitation, which is predominantly
model-dependent.

Method / SR motion quality text align face recongized identity check average

ID-Animator 11.5% 60.0% 93.5% 82.5% 61.9%
ConsisID 38.5% 73.5% 89.5% 74.5% 69.0%
MagicMirror 44.0% 75.5% 98.0% 81.0% 74.6%

Table 5. Success rate comparison.

A.5. Implementation Details

Decoupled Facial Embeddings. Our architecture employs
two complementary branches: an ID embedding branch
based on pre-trained PhotoMakerV2 [34] with two-token
ID-embedding query qid, and a facial structural embedding
branch that extracts detailed features from the same ViT’s
penultimate layer. The latter initializes 32 token embed-
dings as facial query qface input. We use a projection layer
to align facial modalities before diffusion model input.
Conditioned Adaptive Normalization. This paragraph
elaborates on the design details of the Conditioned Adap-
tive Normalization (CAN) module, complementing the
overview provided in Sec. 3.3 and Fig. 4. For predicting fa-

1K 3K 5K 16K

w/ CAN

w/o CAN

Reference 
Ground Truth

Iterations:

Figure 12. CAN speeds up the convergence. Without the Condi-
tioned Adaptive Normalization, the model cannot fit the simplest
appearance features like hairstyle in the image pre-train stage.

cial modulation factors mface, we employ a two-layer MLP
architecture, following the implementation structure of the
original normalization modules ω{vid, text}. The detailed im-
plementation of CAN is illustrated in Fig. 11. Given the
facial ID embedding xid → R2→c containing two tokens,
we first apply one global projection layer for dimensional-
ity reduction, mapping it to dimension c1. Subsequently,
in each adapted layer, we concatenate this projected em-
bedding with the time embedding t and the predicted shift
factor µ1

vid along the channel dimension. An MLP then pro-
cesses this concatenated representation to produce the final
modulation factors. To ensure stable training, all newly in-
troduced modulation predictors are initialized with zero.

We also tried to directly use the prediction of CAN as the
data distribution, this results in a bad initialization, compar-
ing with the residual prediction, direct prediction leads to
abnormal video generation quality.

B. Additional Discussions

B.1. Advantages of CAN

The benefits of CAN in facial condition injection are ev-
ident in its ability to enhance training convergence, par-
ticularly during the image pre-train stage. As illustrated
in Fig. 12, models equipped with CAN achieve signif-
icantly improved identity information capture, enabling
faster adaptation to appearance attributes. This acceleration
in convergence highlights CAN’s effectiveness in preserv-
ing identity consistency throughout the training process.

Furthermore, we specifically design CAN and related
modules to be lightweight and avoid altering any pre-
trained weights of the video DiT, thereby preserving the
original model capacity. We evaluate GPU memory uti-
lization, parameter count, and inference latency for gen-
erating a 49-frame 480P video. Compared to the base-
line model, the additional parameters introduced by Mag-
icMirror are primarily concentrated in the embedding ex-
traction stage, which requires only a single forward pass.
As summarized in Tab. 6, compared with ConsisID [69] and
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CogVideoX [64] baseline, MagicMirror introduces minimal
computational overhead, with only a slight increase in GPU
memory consumption and inference time.

Model Video size Memory Params. Latency Batch↑Iter. Data (I+V) GPU

ID-Animator (16,512,512) 8.4 GiB 1.52B 11s 2↑58K 0K+13K A100*1

CogVideoX-5B (49,480,720) 24.9 GiB 10.5B 204s (0.1-2K)↑750K 2B+35M -

CogVideoX-I2V (49,480,720) 25.9 GiB 10.6B 213s - - -
ConsisID (49,480,720) 41.5 GiB 11.1B 213s 80↑1.8K 0K+130K H100*40
MagicMirror (49,480,720) 28.6 GiB 12.8B 209s 8↑9K* 570K +29K A800*8

Table 6. Computation overhead of MagicMirror. All computa-
tions are measured on the one A800 GPU.

B.2. Distribution Analysis and Its Impact

We begin by visualizing the predicted modulation scale fac-
tors ε using t-SNE [54] in Fig. 13. The results show that dis-
tinct modalities occupy characteristic distributions across
different Transformer layers, and these distributions appear
largely invariant to the specific timestep input. In particu-
lar, the face modality exhibits a unique pattern, while the
conditioned residual ε̂ introduces targeted shifts away from
the baseline distribution. This shift empirically accelerates
model convergence when incorporating ID conditions.

Beyond the t-SNE visualization, we further investigate
the critical role of distribution alignment by examining how
modality-aware data distributions affect generation qual-
ity. Specifically, we fine-tuned only the normalization lay-
ers ωvid,ωtxt of the CogVideoX base model on two distinct
datasets—CelebV-Text [66] and our Pexels video collec-
tion [2]. As illustrated in Fig. 14, this distribution-specific
fine-tuning exerts a substantial influence on the spatial fi-
delity of generated videos. These observations underscore
the importance of aligning modality distributions during
training, and they also validate the high quality of our cu-
rated video dataset.

Additionally, we conducted another experiment using
our Pexels dataset. We found that by using a dataset with
twice the frame rate and training only the modulation lay-
ers, we achieved an improvement in the VBench [25] dy-

Norm Layers Finetuning on CelebV-Text

Norm Layers Finetuning on Pexels

Figure 14. Modulation layers reflect data distribution. Fine-
tuning solely the modulation layer weights demonstrates adapta-
tion to distinct data distributions, affecting both spatial fidelity and
temporal dynamics.

namic motion score from 0.71 to 0.84. This result, similar
to Experiments E-F in Tab. 3, further verifies the impact of
the modulation module on dynamic facial motion.

B.3. Two-Stage Training Analysis

In Fig. 15, we present additional ablation results that clar-
ify how each training phase addresses a distinct aspect of
identity-preserving video generation. Specifically, the im-
age pre-training phase prioritizes robust identity encoding,
ensuring that facial features remain consistent and accu-
rately captured. However, training exclusively on image
data leads to color-shift artifacts during video inference,
caused by modulation factor inconsistencies across different
training stages. By combining these two stages, our final ap-
proach aligns both identity representation and color distri-
bution, resulting in dynamic and high-fidelity ID-preserving
videos without the artifacts observed in single-stage alterna-
tives.

B.4. Limitation Analysis

As discussed in Sec. 5, our approach faces several limita-
tions, particularly in handling multi-person scenarios and
preserving fine-grained features. Fig. 16 illustrates two rep-
resentative failure cases: incomplete transfer of reference
character details (such as accessories) and motion artifacts
caused by the base model. These limitations highlight crit-
ical areas for future research in controllable personalized



w/o image pretrainw/o video finetune Full modelw/o adaptive conditionw/o facial embedding Full model

A young woman with curly hair and a professional demeanor is seen engaging 
in a phone conversation while seated at a desk. She wears a black headset with 
a microphone, a dark blazer, and a necklace with a heart pendant…

A woman as the main subject. She appears to be outdoors, as suggested by 
the natural lighting and the blurred background that suggests a natural 
setting. The woman has dark hair and is wearing sunglasses on top of her 
head. She is dressed in a patterned top with a blue and white scheme…

Figure 15. Examples for ablation studies on training strategies.

(b) VideoQuality:MotionArtifacts

(a) Fine-grained FeatureMissing

Figure 16. Limitations of MagicMirror. (a) Fine-grained feature
preservation failure in facial details and accessories. (b) Motion
artifacts in generated videos showing temporal inconsistencies.

video generation, particularly in maintaining temporal con-
sistency and fine detail preservation.

C. Additional Results & Applications

C.1. Additional Applications

Fig. 17 demonstrates two extended capabilities of Mag-
icMirror. First, beyond realistic customized video gener-
ation, our framework effectively handles stylized prompts,

leveraging CogVideoX’s diverse generative capabilities to
produce identity-preserved outputs across various artistic
styles and visual effects. Furthermore, we show that our
method can generate high-quality, temporally consistent
multi-shot sequences when maintaining coherent character
and style descriptions. We believe these capabilities have
significant implications for automated video content cre-
ation.

“Art nouveau, organic curves, floral patterns style
a male police officer talking on the radio”

(a) Videos with style-specific prompts

(b) multi-shot videos with consistent character prompts

A serene woman with delicate features, wearing a flowing 
white blouse
• practices gentle yoga stretches…
• sits at her kitchen counter bathed in morning light. ..
• is working at her writing desk near a window…

“The synthwave retro, 80s style, sunset colors style, 
an elderly woman img is reading book.”

Figure 17. Additional applications of MagicMirror. We can
generate identity-preserved videos across artistic styles and can
generate multi-shot videos with consistent characters. More re-
sults are presented in the project page.

C.2. Image Generation Results

MagicMirror demonstrates strong capability in ID-
preserving image generation with the image-pre-trained
stage. Notably, it achieves even superior facial identity
fidelity compared to video-finetuned variants, primarily due
to optimization constraints in video training (e.g., limited



batch sizes and dataset scope). Representative examples
are presented in Fig. 18.

C.3. Video Generation Results

Additional video generation results and comparative anal-
yses are provided in Figs. 19 and 20, highlighting our
method’s advantages. Fig. 19 specifically demonstrates the
benefits of our one-stage approach over I2V, including supe-
rior handling of occluded initial frames, enhanced dynamic
range, and improved temporal consistency during facial ro-
tations. In Fig. 20, we provide more results with human
faces on different scales.

D. Acknowledgments

Social Impact. MagicMirror is designed to facilitate cre-
ative and research-oriented video content generation while
preserving individual identities. We advocate for responsi-
ble use in media production and scientific research, explic-
itly discouraging the creation of misleading content or vio-
lation of portrait rights. As our framework builds upon the
DiT foundation model, existing diffusion-based AI-content
detection methods remain applicable.
Data Usage. The training data we used is almost entirely
sourced from known public datasets, including all image
data and most video data. All video data was downloaded
and processed through proper channels (i.e., download re-
quests). We implement strict NSFW filtering during the
training process to ensure content appropriateness.
Figures 18-20 are presented on the following pages ↓



Ref-ID Generated Images Ref-ID Generated Images

Figure 18. Image generation using MagicMirror. Model in the image pre-train stage captures ID embeddings of the reference ID (Ref-
ID), yet over-fits on some low-level distributions such as image quality, style, and background.

Camera Motion

Dynamic Facial Movement

Camera Motion + Dynamic Facial Movement

Figure 19. Advantages over I2V generation. MagicMirror successfully handles challenging scenarios including partially occluded initial
frames and maintains identity consistency through complex facial dynamics, addressing limitations of traditional I2V approaches.



Ref-ID Generated Videos

Figure 20. Video generation results. We demonstrate MagicMirror’s capability across varying facial scales and compositions. Additional
examples and comparative analyses are available in the project page.
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