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A. Implementation Details

We train our model using AdamW [5] with a learning rate
of 1075 and a weight decay of 10~*. For permutation learn-
ing, the learning rate decays by a factor of 0.9 every 5
epochs across a total of 50 epochs, whereas for pose esti-
mation, it decays by the same factor every 50 epochs over
1000 epochs. All experiments are conducted on a single
A100 GPU with 80GB of memory, requiring approximately
70 hours for the PartNet chair category, 40 hours for the ta-
ble category and 16 hours for the storage category. Follow-
ing [3], we set the hyperparameters as A\p = 1, Ap = 1,
A = 20, and Ag = 20. The code and dataset will be made
publicly available upon acceptance.

B. Metric Details

Shape Chamfer Distance (SCD) [3] provides a direct mea-
sure of the overall chamfer distance between predicted and
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ground truth shapes. Using notations introduced in Secs.
3.4 and 3.5, SCD is defined as:

N
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N
SCD =CD ( (é[i]'Pi + tA[i]), U(Rsz + tl)> , (11)
i=1
where UY; indicates the union of N parts to form the as-
sembled shape and [i] denotes the index of the matched part
corresponding to the i-th part under optimal matching M.
SCD is scaled by a factor of 10% for better practical inter-
pretation.
Part Accuracy (PA) [3] assesses the correctness for indi-
vidual part poses. A part pose is considered as accurate if
its chamfer distance is below a specific threshold e = 0.01:
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where 1 is an indicator function, which returns 1 if the con-
dition is met and O otherwise.

Success Rate (SR) [4] is 1 if all parts in a shape are consid-
ered as accurate, and 0 otherwise:

SR = 1(PA = 1). (13)

This metric measures whether an entire assembled shape
is correctly predicted, making it a stringent criterion for
evaluating complete assembly success.

Kendall-Tau (KT) [7] measures the ordinal correlation be-
tween the ground truth permutation ¢ € N and the pre-
dicted permutation & € NV Formally, KT is defined as:

ct(6,0) —c(6,0)
N(N-1)/2 ~

where ¢t (6,0) and ¢~ (6,0) denote the number of cor-
rectly (concordant) and incorrectly (discordant) ordered
pairs in the sequence, respectively. The KT metric ranges
from —1 to 1, where 1 indicates a perfect match, —1 in-
dicates a completely reversed sequence, and O represents a
random ordering.

KT =

(14)
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Figure 6. Illustration of several examples from the datasets. (a) and (b) are from the PartNet dataset, while (c) and (d) are from the IKEA-
Manual dataset. (a) and (c) are examples of chairs, and (b) and (d) are examples of tables. For each example, the leftmost column shows
the fully assembled shape in their point cloud format, the top row on the right presents the step-by-step assembly instruction manual we
generated, and the bottom row displays the point cloud of the newly added parts for each step.

C. Dataset Creation Details

We reuse the dataset provided by Li et al. [3] for Part-
Net and apply the same preprocessing pipeline for IKEA-
Manual. Specifically, for each part, we first randomly select
10,000 vertices from its mesh model, followed by sampling
1,000 points using Farthest Point Sampling (FPS). All point
clouds are normalized to be centered at the world origin,
adopting a canonical coordinate system derived via Prin-
cipal Component Analysis (PCA) [6]. The longest diago-
nal of their Axis-Aligned Bounding Box (AABB) is scaled
to unit length, eliminating the effects of scale variations
across furniture. Additionally, to group geometrically sim-
ilar parts, we adopt a robust heuristic based on AABB di-
agonal lengths. Parts with similar diagonal lengths are clas-
sified into the same group, regardless of their original pose
or orientation. This grouping accounts for symmetries and
ensures that similar components, such as table legs or chair
arms, are treated uniformly during the assembly process.

As shown in Fig. 6, for both the PartNet and IKEA-
Manual datasets, we generate step-by-step furniture assem-
bly manuals to simulate real-world instructional guides. Us-
ing Blender’s [1, 2] Freestyle functionality, we render 2D
line drawing diagrams. First, the fully assembled furniture
is placed at the world origin, with the camera positioned to
provide a clear frontal view. For each subsequent assem-
bly step, one part is removed, and the scene is re-rendered.
Freestyle’s edge-enhancement capabilities ensure that the
diagrams highlight the part edges effectively, resembling
traditional technical manuals. The assembly order is deter-
mined using two complementary criteria: (1) parts grouped
by AABB diagonal lengths are ordered from bottom to top
along the z-axis, reflecting a natural bottom-up assembly
process, and (2) within each group, parts are ordered by
their distance from the camera, starting with the farthest.
This ensures visibility and interpretability of the remaining
parts in the diagram.



D. More Experiment Results

D.1. Details of Multi-Step and Multi-View.

To extend our framework to more realistic assembly sce-
narios, we implement two modifications: Multi-Part, which
allows multiple parts to be added in a single step, and Multi-
View, which introduces viewpoint variations across steps.
Both modifications are performed by fine-tuning our previ-
ously trained model, as it already possesses the foundational
ability for manual-guided 3D part assembly.

Multi-Step. Motivated by the observation that real-world
instruction manuals frequently introduce multiple parts si-
multaneously, we extend our framework to handle Multi-
Part scenarios. This allows us to assess our model’s capa-
bility in more complex and realistic assembly tasks. Specif-
ically, given an initial set of N parts, we group these parts
into M groups (where M <) based on geometric similarity
computed using Chamfer Distance. Each group of similar
parts is then associated with a single step diagram. Con-
sequently, we adjust the positional encodings according to
these M groups rather than individual parts. Importantly,
this grouping simplifies positional encoding assignments,
and the model’s input is updated accordingly to reflect these
M groups. The similarity matrix used within our frame-
work thus becomes an M x M square matrix

Multi-View Real-world manuals frequently present steps
from varying viewpoints to avoid occlusions and clearly il-
lustrate part connections. To reflect this practical scenario,
we define a set of eight predefined viewpoints, correspond-
ing to the vertices of a 3D cube surrounding the object. Dur-
ing dataset preparation, each step diagram’s viewpoint is
randomly selected from these eight viewpoints, introducing
realistic visual variation across assembly steps. To facilitate
viewpoint alignment, we initialize each instruction manual
with an additional blank diagram as the first step, ensur-
ing consistent reference for subsequent viewpoint encoding.
Moreover, to maintain canonical space across training, we
enforce that the final step diagram always uses a fixed view-
point (denoted as View 0). In our model, consecutive step
diagrams, including the blank initial step, are individually
processed through the vision encoder, yielding feature rep-
resentations f; and f;1. These features are then concate-
nated into f' = [fy; fi+1], allowing the model to effectively
capture the relationships and viewpoint changes between
adjacent steps, thereby enhancing robustness to varying vi-
sual perspectives.

D.2. Number of Parts.

We analyze the assembly quality across varying numbers of
parts on PartNet chair test split, as shown in Fig. 7. It is gen-
erally accepted that, assembling objects with more parts is
more challenging due to the combinatorial explosive issue.
However, our method consistently achieves a higher success
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Figure 7. Comparison of average success rates (SR) across varying
numbers of parts for different methods on PartNet chair test split.
Number of chairs tested shown in background bar chart.

Table 4. 3D part assembly results on the PartNet chair test split.
We train and test the model with ground truth order.

Exp. SCDJ PAT SRt
Manual-PA (Ours) 1.7 95.38 73.07
w/o RoPE 1.8 94.80 69.53
w/ 3 Decoder Layers 2.8 86.63 42.73

rate across all part counts, demonstrating robust adaptabil-
ity to different levels of assembly complexity. Notably, for
shapes with more than 10 parts, 3DHPA and Image-PA ex-
hibit near-zero success rates, whereas our method, Manual-
PA, continues to produce competitive assembly results.

D.3. More Ablation Studies

As shown in Tab. 4, we conduct two additional ablation
studies. In the first study, we incorporate RoPE (Rotary Po-
sition Embedding) [8] into the attention mechanism. We ob-
serve that RoPE does not conflict with the pre-existing po-
sitional encoding (PE) in the features and that its inclusion
further improves the model’s performance. In the second
study, we examine the impact of the number of transformer
decoder layers. In our default model, the decoder consists
of six layers. When we reduce the number of layers to three,
the performance drops significantly, particularly in the SR
metric, which decreases by 27 percentage points. These re-
sults highlight the importance of using more decoder layers
for the 3D part assembly task.

D.4. Kendall Tau vs. Performance

As shown in Fig. 8, we conduct experiments to investi-
gate the impact of part order on the performance of the
3D part assembly model. Starting with a model trained
using the ground truth order, we introduce varying levels
of Gumbel noise to the permutation matrix to randomly
perturb the order and then perform inference for 3D part
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Figure 8. The impact of different part orders on the performance of
the 3D part assembly model evaluated on PartNet chair test split.
As the Kendall Tau (KD) approaches 1, the order of the parts be-
comes increasingly correlated with the order specified in the man-
ual, whereas lower KD values indicate less correlation.

assembly. The results reveal that assembly performance
improves as Kendall Tau (KD) approaches 1, indicating a
stronger correlation between the perturbed and ground truth
orders. Conversely, lower KD values lead to poorer per-
formance, which aligns with intuition: incorrect correspon-
dences make it difficult for the model to identify the cor-
rect step diagram for each part, thereby hindering pose pre-
diction. The results also highlight the performance upper
bound of our method when KD = 1. Interestingly, the or-
der learned through permutation learning achieves a KD of
approximately 0.79, outperforming randomly perturbed or-
ders with similar KD values. This advantage stems from
the fact that our method’s randomness primarily arises from
the indeterminacy of part order within geometrically equiv-
alent groups, while maintaining relatively accurate align-
ment across groups.

D.5. Cross Attention Map on Step Diagrams.

As shown in Fig. 9, we visualize the cross-attention maps
between each part and the step diagrams. High attention
values correspond to regions in the step diagram where the
model pays more attention, which aligns with the spatial
placement of parts during assembly. For instance, when the
first blue board focuses on the back of the chair, it is po-
sitioned on the chair back, and when it attends to the area
under the seat, it acts as a support between the legs. Com-
paring the two methods, we observe that without order as a
soft guidance (represented by “Manual-PA w/o Order”), the
attention regions are more dispersed, resulting in less accu-
rate part placement. For example, the third cyan board does
not focus entirely on the left chair leg without soft guidance,
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Figure 9. Visualization of cross-attention maps on step diagrams.
The cross-attention represents the mean aggregation for each part
across all step diagrams. Color red indicates a higher attention.

leading to a misaligned leg position. The absence of order
as explicit guidance also results in incorrect part placement.
For instance, the fourth purple board, which should be part
of the seat, is instead assembled onto the chair back.



E. More Qualitative Results

E.1. More Comparisons
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Figure 10. Qualitative comparison of various 3D part assembly methods. Eight examples are shown: chair (a), (b) and table (c), (d) from
the PartNet dataset, and chair (e), (f) and table (g), (h) from the IKEA-Manual dataset.



E.2. More Visualizations
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Figure 11. Results visualization of our method Manual-PA. The left column showcases examples where the method performs well, while
the right column illustrates cases with less satisfactory outcomes. Eight examples are included: chairs (a), (b) and tables (c), (d) from the
PartNet dataset, and chairs (e), (f) and tables (g), (h) from the IKEA-Manual dataset..



E.3. Demonstration Video
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Figure 12. Snapshots from the demonstration video of the assembly process. For each frame, the leftmost column displays the step diagram
from the manual, the middle column shows the assembly result of Image-PA, and the rightmost column presents the assembly result of our
Manual-PA method. End frames of each step are selected for illustration. The video is provided as a part of supplementary material.
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