
MoMa-Kitchen: A 100K+ Benchmark for Affordance-Grounded
Last-Mile Navigation in Mobile Manipulation

Supplementary Material

This supplementary material extends our main study by
providing additional details and data to improve the repro-
ducibility of our MoMa-Kitchen method. It includes further
evaluations and a range of qualitative results for NavAff,
which reinforce the conclusions drawn in the primary paper.
Additionally, we offer some affordance collection videos in
the accompanying zip file.
▷ Sec. 1: Describes the hierarchical structure of the dataset,
including scenes, configurations, and episodes, with de-
tailed information on the generation process, target objects,
and simulation settings.
▷ Sec. 2: Provides an in-depth explanation of the evaluation
metrics used, training configurations, and the baseline mod-
els compared in our study.
▷ Sec. 3: Presents additional visualizations of predictions,
further performance evaluations, ablation results regarding
the weight of the MSE loss, some data collection videos,
and real-world demo video.
▷ Sec. 4: Discusses the limitations of our work and explores
prospects for future research.

1. Dataset

1.1. Dataset Composition and Splits

Our MoMa-Kitchen is hierarchically organized into three
levels: scenes, configurations, and episodes. Here, we pro-
vide a detailed description of each level.

A scene consists of randomly generated base furniture
and layout, where certain articulated objects in the base
furniture (e.g., microwaves, oven counters) serve as poten-
tial target objects for robotic arm manipulation. To ensure
scene diversity, we randomly sample furniture categories,
arrangement sequences, and specific instances within cat-
egories during scene generation. The statistics of target
object assets employed in MoMa-Kitchen are summarized
in Tab. 1.

Within each scene, we randomly place a varying num-
ber (1-3) of rigid objects, which, together with the articu-
lated objects, constitute the set of target objects. To increase
scene complexity, we position obstacles around these target
objects. Each unique combination of target objects and ob-
stacles forms a configuration of the scene.

To facilitate first-person view data collection, we sample
10 views for each configuration using a camera mounted on
the robotic arm. Each view generates one episode, and the
view selection follows two principles: (1) views are ran-

Rigid-Cats All Bottle Pot Fruit Medicine Bottle Vegetable

Rigid-Num 65 6 7 11 8 33

Articulated-Cats All Faucet Microwave Cabinet Dishwasher Owen Counter

Articulated-Num 48 11 7 20 1 9

Obstacle-Cats All Chair Trolley Bin Table Cart

Obstacle-Num 24 1 8 1 10 4

Table 1. Statistics of target object assets employed in MoMa-
Kitchen. Distribution of rigid, articulated, and obstacle objects
across different categories, showing the number of instances per
category used in our dataset configurations.

domly initialized around the target, and (2) views must en-
compass both the target object and the surrounding floor
area.

In total, our MoMa-Kitchen comprises 569 scenes,
14, 155 configurations, and 127, 343 episodes, representing
a comprehensive collection of mobile manipulation scenar-
ios.

1.2. Details on Simulation
We build our MoMa-Kitchen based on the BestMan [5] sim-
ulation environment, maintaining consistent simulation pa-
rameters across all scenes and interaction trials. The de-
tailed configuration of our simulation setup is specified be-
low:
• RGBD rendering. We render RGB images and depth

maps using the BestMan interface. For comprehensive
first-person view sampling, we position the camera at
varying locations relative to the target object. Specifi-
cally, the camera is placed either to the left or right with
a lateral offset ranging from 0.0 to 1.5 meters, while the
forward distance is sampled between 1.5 and 3.8 meters.
The camera orientation is consistently directed toward the
target object to ensure optimal coverage of both the target
and the surrounding floor area. These sampling ranges
were empirically determined to maximize viewpoint di-
versity while maintaining scene relevance.

• 3D point cloud. We back-project the depth image into a
3D point cloud using the camera’s intrinsic parameters.
Subsequently, we filter out points with z-values below
0.02 meters to obtain the floor point cloud.

• Target objects sampling. In each scene, we randomly
position 1-3 rigid objects in addition to the pre-existing
articulated objects from scene generation. These objects



collectively form our set of target objects, all of which are
placed on kitchen countertops. To increase scene com-
plexity, we randomly place 1-3 obstacles within the semi-
circular region in front of each target object.

• Interaction Trail. To collect discrete navigation affor-
dance values, we systematically sample robot positions
within a semicircular region around the target object, with
the radius set to the maximum reach of the robot arm. At
each position, spaced at 10 cm intervals along both x and
y axes, the robot attempts to either grasp (for parallel grip-
pers) or suction (for vacuum grippers) the target object.

1.3. Additional Visualization Results

We present additional visualization examples from MoMa-
Kitchen, including object assets, scene configurations, and
affordance maps.

1.3.1. Object Assets
We showcase a diverse set of object assets in Fig. 2. These
assets serve as manipulation targets, environmental ele-
ments, or obstacles in our generated scenes.

1.3.2. Scene Configurations
We illustrate a comprehensive set of scene configurations
in Fig. 3. These examples highlight the complexity and di-
versity of our generated environments, reflecting real-world
manipulation scenarios.

1.3.3. Affordance Map Examples
We obtain sparse discrete navigation affordance values by
systematically sampling robot positions and evaluating ob-
ject interactions in the simulator. These sparse affordance
values are then interpolated using a Gaussian-weighted
k-nearest neighbor algorithm to generate continuous and
dense navigation affordance maps. The comparison be-
tween sparse samples and interpolated dense maps is illus-
trated in Fig. 1.

2. Additional Implementation Details

2.1. Evaluation Metrics

In this section, we provide a detailed explanation of the
evaluation metrics used in our study. To comprehensively
evaluate our method, we adopt five metrics: Root Mean
Squared Error (RMSE), Logarithmic Mean Squared Error
(logMSE), Pearson Correlation Coefficient (PCC), Cosine
Similarity (SIM), and Continuous Intersection over Union
(cIoU). Below, we describe each metric, its calculation for-
mula, and its relevance to our task.

• RMSE: RMSE measures the numerical alignment be-
tween predicted and ground truth values. It penalizes
larger errors through squared differences, as defined be-

low:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2, (1)

where yi and ŷi are ground truth and predicted values, re-
spectively, and N is the total number of elements. RMSE
reintroduces the original scale of predictions, offering in-
terpretability while highlighting large errors. In our study,
RMSE assesses navigation affordance predictions by en-
suring precise positioning and minimizing major errors in
complex environments.

• logMSE: LogMSE evaluates the relative differences be-
tween predictions and ground truth, reducing the impact
of large outliers. It is calculated as:

logMSE =
1

N

N∑
i=1

(log(1 + yi)− log(1 + ŷi))
2
, (2)

By focusing on proportional consistency, logMSE
smooths out outliers and highlights relative accuracy. In
this study, it evaluates the model’s ability to capture bal-
anced affordance patterns across both low and high value
regions.

• PCC: PCC quantifies the linear relationship between pre-
dicted and ground truth patterns, independent of their
magnitudes:

PCC =

∑N
i=1 (yi − ȳ)

(
ŷi − ¯̂y

)√∑N
i=1 (yi − ȳ)

2 ∑N
i=1

(
ŷi − ¯̂y

)2 , (3)

where ȳ and ¯̂y are the means of y and ŷ. PCC highlights
pattern consistency, making it ideal for evaluating spatial
distributions in affordance maps. A high PCC reflects ac-
curate predictions of affordance trends, which is essential
for precise navigation.

• SIM: SIM evaluates the alignment of relative spatial pat-
terns between predictions and ground truth. It is calcu-
lated as:

SIM =
1

N

N∑
i=1

yi · ŷi
∥yi∥∥ŷi∥

(4)

SIM with higher values indicating better structural align-
ment. Unlike PCC, which evaluates overall pattern
trends, SIM focuses on the overlap of affordance regions,
making it particularly effective for assessing spatial align-
ment. In our study, SIM ensures that predicted affor-
dance maps accurately capture the structural properties
of ground truth.

2.2. Training Details
To ensure a fair comparison, we train our model and all
baseline methods under consistent settings. The implemen-
tations for both our methods and the baselines are developed



using PyTorch. All models are trained on a single NVIDIA
A100 GPU with a batch size of 64 for 6 epochs, completing
the entire process in approximately 8 hours. We utilize the
Adam optimizer [1] with betas configured as 0.9 and 0.999.
The learning rate is initialized at 8e-4 and follows a cosine
decay schedule.

2.3. Compared Baselines

Since our work is the first to propose a benchmark for nav-
igation affordance grounding, there are no existing meth-
ods that directly address this task. Therefore, we adapt
several classical methods commonly used for feature ex-
traction and 3D object detection on point clouds for com-
parison. Specifically, we include PointNet++[3], a founda-
tional model for point cloud feature extraction, VoteNet[4],
a pioneering method for 3D object proposal generation, and
H3DNet [6], which enhances object detection with hierar-
chical features. To ensure a fair and comprehensive compar-
ison, we adapt the official implementations of these meth-
ods to our MoMa-Kitchen dataset. Specifically, we reim-
plement their architectures and fine-tune them for the nav-
igation affordance grounding task, conducting training and
evaluation under identical experimental settings. This al-
lows us to systematically assess their performance against
our proposed NavAff.
PointNet++. PointNet++ extends the original PointNet [2]
framework by introducing hierarchical feature learning for
point cloud processing. This method divides the input point
cloud into overlapping regions using a sampling and group-
ing strategy, applying PointNet locally to extract features,
and aggregating them hierarchically. PointNet++ is widely
used for tasks such as segmentation and classification in
3D point clouds. In our adaptation, the point cloud data
is passed through an encoder to extract features, which are
then decoded to predict navigation affordance.
VoteNet. VoteNet introduces a deep Hough voting frame-
work for 3D object detection in point clouds. The method
employs a point-based network to generate votes for object
centers, followed by an aggregation module that clusters
votes to produce 3D object proposals. To adapt VoteNet
for our benchmark, we removed the Vote Aggregation and
Detection components originally used for bounding box re-
gression, retaining the remaining modules to perform nav-
igation affordance grounding. This adaptation ensures the
network focuses on predicting affordance maps instead of
object detection.
H3DNet. H3DNet proposes a Hierarchical 3D Detection
Network that improves 3D object detection by leverag-
ing multi-level geometric features. The network integrates
instance-level and part-level features using a coarse-to-fine
detection pipeline and introduces novel feature aggrega-
tion modules to enhance geometric reasoning. Similar to
VoteNet, in our adaptation, we removed the bounding box

regression components while retaining the remaining mod-
ules to focus on navigation affordance grounding, enabling
the network to predict affordance maps instead of object de-
tection outcomes.

3. Additional Experimental Results
Visualization of Predictions. As shown in Fig. 4, we
present the predicted navigation affordance results visual-
ized within the dense global point cloud. Additionally, we
provide a comparison with the ground truth affordance to
highlight the model’s performance and alignment with the
reference data.
Detailed Evaluation. Tab. 2 presents a comprehensive
evaluation of various metrics within a single scene, offer-
ing an in-depth analysis of the model’s behavior and perfor-
mance. Each scene comprises multiple episodes, each rep-
resenting distinct configurations and challenges. By evalu-
ating metrics across these episodes, we gain a finer under-
standing of the model’s ability to generalize under varying
conditions.
Impact of Weight Choices on Weight MSE Loss. Fig. 5
illustrates that when the weight value is too small, the
model experiences underfitting because the influence of
the loss function weight is insufficient, preventing the
model from effectively learning high-quality navigation af-
fordance grounding. Conversely, when the weight value is
too large, the class imbalance issue described earlier per-
sists, which also limits the model’s performance. From the
figure, it can be observed that when the weight value is set
to 0.7, the Pearson Correlation Coefficient (PCC) reaches
its peak. PCC measures the linear correlation between the
predicted and ground truth values, effectively reflecting the
model’s ability to capture the distribution patterns of navi-
gation affordance. A high PCC value indicates a stronger
correlation between the predicted trends and the ground
truth distribution, which is particularly critical for naviga-
tion tasks in complex environments.
Real world Experiment. Please see the real-world cap-
tured video demo in the zip file.
Affordance labeling visualization. Please see the naviga-
tion affordance collection video in the zip file.

4. Discussion on Limitations and Future Work
While our work makes significant progress in addressing
the “last mile” navigation challenge, we acknowledge sev-
eral limitations and identify promising directions for future
research:
• Scene Diversity: Although MoMa-Kitchen contains a

large number of episodes, they are currently limited to
kitchen environments. Future work should expand to
other household scenarios such as living rooms, bed-
rooms, and bathrooms, which present different challenges



and spatial configurations.
• Single-Task Focus: The current approach focuses solely

on reaching and grasping tasks. Future work should con-
sider more complex manipulation sequences that require
multiple positioning adjustments or different types of in-
teractions (e.g., pushing, pulling, or sliding objects).

Future Directions
• Multi-Task Learning: Future research could explore

how navigation affordances vary across different manip-
ulation tasks and develop models that can adapt their po-
sitioning strategies based on the intended manipulation
action.

• Online Adaptation: Developing methods for online ad-
justment of affordance predictions based on real-time
feedback during task execution could enhance robustness
in dynamic environments.

• Integration with LLMs: While current LLM-based ap-
proaches have limitations, future work could explore
hybrid approaches that combine our learned affordance
models with LLM reasoning for more sophisticated task
planning and execution.

• Uncertainty Estimation: Incorporating uncertainty esti-
mation in affordance predictions could help robots make
more informed decisions about positioning and poten-
tially trigger replanning when necessary.
These limitations and future directions present exciting

opportunities for extending our work and further advancing
the field of mobile manipulation.

Table 2. Evaluation results across individual scenes on MoMa-
Kitchen. Performance metrics evaluated separately for each scene
in the dataset.

Scene ID RMSE ↓ logMSE ↓ PCC ↑ SIM ↑
989172 0.283 0.0439 0.685 0.702
807952 0.269 0.0402 0.652 0.667
502334 0.284 0.0443 0.716 0.732
306938 0.282 0.0435 0.737 0.752
443958 0.232 0.0303 0.615 0.622
66171 0.297 0.0493 0.595 0.619
152285 0.242 0.0332 0.552 0.578
306168 0.223 0.0282 0.595 0.609
636942 0.283 0.0445 0.694 0.713
739657 0.264 0.0392 0.652 0.672
143853 0.291 0.0463 0.742 0.756
739202 0.236 0.0312 0.561 0.584
583009 0.302 0.0487 0.702 0.719
451797 0.301 0.0491 0.728 0.745
116280 0.166 0.0164 0.305 0.364
274269 0.274 0.0405 0.829 0.827
485779 0.298 0.0480 0.730 0.749
772552 0.299 0.0494 0.683 0.706
359363 0.213 0.0255 0.566 0.576
264325 0.292 0.0454 0.593 0.622
194561 0.276 0.0417 0.678 0.695
792629 0.292 0.0462 0.701 0.715
69567 0.273 0.0416 0.722 0.735
783647 0.288 0.0457 0.644 0.666
721930 0.219 0.0268 0.500 0.528
668061 0.266 0.0385 0.587 0.616
615543 0.275 0.0408 0.634 0.648
994972 0.285 0.0436 0.759 0.754
996121 0.266 0.0389 0.587 0.604
67534 0.278 0.0421 0.633 0.654
142672 0.270 0.0402 0.700 0.714
501160 0.276 0.0426 0.692 0.714
487375 0.227 0.0286 0.519 0.528
437964 0.294 0.0465 0.712 0.729
355986 0.299 0.0485 0.744 0.764
453020 0.285 0.0449 0.663 0.686
309033 0.296 0.0465 0.758 0.762
567413 0.225 0.0284 0.608 0.619
23304 0.248 0.0340 0.560 0.586
960190 0.247 0.0336 0.683 0.699
243997 0.288 0.0454 0.750 0.762
466622 0.265 0.0389 0.571 0.592
569661 0.278 0.0424 0.685 0.705
403556 0.195 0.0219 0.481 0.504
297024 0.289 0.0454 0.724 0.742
419493 0.219 0.0278 0.300 0.369
179882 0.213 0.0255 0.566 0.625
328786 0.256 0.0370 0.629 0.643
475545 0.186 0.0202 0.573 0.568
773991 0.278 0.0425 0.665 0.684



Sparse Dense Sparse Dense

Figure 1. Visualization of navigation affordance maps in MoMa-Kitchen. Comparison between sparse affordance values collected
through discrete robot-object interactions (left) and their corresponding dense maps generated via Gaussian-weighted k-nearest interpola-
tion (right).



Figure 2. Visualization of object assets in MoMa-Kitchen. The collection includes diverse categories of objects commonly found in
household environments, ranging from kitchenware and appliances to furniture and daily necessities.



Figure 3. Visualization of diverse scene configurations in MoMa-Kitchen. Each example showcases different arrangements of base
furniture, layouts, target objects, and obstacles, demonstrating the variety of manipulation scenarios.



GT Prediction GT Prediction

Figure 4. Predicted vs. Ground Truth Navigation Affordance. Comparison of the model’s predicted navigation affordance (right
columns) and the ground truth affordance (left columns) visualized within dense global point clouds. The visualizations illustrate the
spatial alignment and consistency of the predictions with the reference data across different scenes.



Figure 5. Effect of Weight on MSE Loss and Evaluation Metrics. Evaluation of the impact of different weight values in the Weighted
MSE loss function on various metrics, including RMSE, LogMSE, PCC, SIM, and cIoU.
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