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Supplementary Material

In this supplementary material, we will provide addi-
tional details on the aspects omitted in the main paper.

• Section A. Additional Implementation details: More
construction details about the proposed Continual Long-
Tailed Visual Question Answering (CLT-VQA).

• Section B. Terminology Explanation: Detailed explana-
tion of the Neural Collapse (NC) and Optimal Transport
(OT).

• Section C. Theoretical Justification: Detailed analysis
of how balanced prototypes promote learning a balanced
feature space.

• Section D. Computation Efficiency: Comprehensive
computation efficiency comparison between our method
and various continual learning approaches in terms of the
computational costs (learnable parameters, training time,
and memory consumption) and complexity analysis.

• Section E. Compared Methods: Detailed analysis about
the compared algorithms, including the long-tailed learn-
ing methods (LDAM [5] and GCL [12]), and the contin-
ual learning approaches (EWC [11], MAS [2], (ER [6],
DER [4], CVS [18], and VQACL [20]).

• Section F. Additional Experimental Results More ex-

perimental results to comprehensively validate the effec-
tiveness of the proposed method, including fine-grained
results across sub-tasks, hyperparameter selection for
trade-off parameter λ and memory size M , evaluations
on a more challenging dataset (VQA-CP v2 [1]), and
experiments on additional methods.

A. Additional Implementation Details

CLT-VQA focuses on the continual learning paradigm and
each sub-task is characterized by a long-tailed data distri-
bution. To equip the model with diverse reasoning skills
essential for real-world applications, we construct CLT-
VQA by dividing two widely used VQA datasets, VQA
v2 [8] and TDIUC [10], into distinct sub-tasks based on
their question type annotations. Specifically, VQA v2 [8]
is partitioned into nine sub-tasks, as illustrated in Tab. 1,
encompassing Recognition, Count, Color, Subcategory, Ac-
tion, Commonsense, Type, Location, and Causal. The Judge
task is excluded to preserve label diversity, as nearly 95%
of its samples belong to the ”yes/no” class. Specifically,
in the ordered scenario, the “Judge” task appears first due
to its abundant training samples, which biases the model

Table 1. Task statistics of VQA v2 in the CLT-VQA setting.

Task Train Test Examples

Recognition 144368 6185 What is the train going over? What is the bird doing?
Count 68131 2894 How many giraffes are there? How many planes are in the picture?
Color 56884 2435 What color is his coat? What color is the bear?
Subcategory 35624 1597 What brand of beer is visible? What brand of soda is advertised?
Action 35175 1448 What is the person doing now? What is the man holding in his left hand?
Commonsense 28107 1219 Does the man look happy? Does the guy have a tattoo?
Type 26388 1204 What type of watercraft is that? What kind of room is this?
Location 14840 696 Where are the trucks? Where is the bird?
Causal 6339 216 Why is the man on the street? Why is the girl holding an umbrella?

Table 2. Task statistics of TDIUC in the CLT-VQA setting.

Task Train Test Examples

Color 133074 62490 What color is in the bike? What color is the man’s t-shirt?
Counting 111857 52905 How many boards are there? How many cups can be seen?
Object R 62862 30693 What furniture is shown in the photo? What animal is shown in the picture?
Scene R 44674 22032 What is the weather like? What season is the child dressed for?
Positional R 26042 12284 What is to the left of cup? What is behind the calm water?
Sport R 21602 10042 What sport is this? What sport is depicted in the picture?
Attribute 19476 9200 What is the sign made of? What is the ground made of?
Activity R 5848 2682 What is the boy doing? What is the dog doing?
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Figure 1. The long-tailed distribution in each sub-task of VQA v2.
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Figure 2. The long-tailed distribution in each sub-task of TDIUC.

toward binary classification and significantly impairs its
ability to learn subsequent classes in later tasks. How-
ever, for comprehensive comparison, we also provide the
experimental results on all ten tasks in this supplementary
material (Section F.1). On TDIUC [10] dataset, we seg-
ment it into eight sub-tasks, as detailed in Tab. 2, which
include Color, Counting, Object Recognition (Object R),
Scene Recognition (Scene R), Positional Reasoning (Posi-

tional R), Sport Recognition (Sport R), Attribute, and Ac-
tivity Recognition (Activity R).

Each sub-task in both datasets exhibits a long-tailed
data distribution, as depicted in Fig. 1 and Fig. 2. In
both figures, the red dashed line indicates a dynamically
set threshold determined by the number of samples per
class. Classes below this threshold are identified as minority
classes. For clarity and to reduce visual clutter, only nine



representative answers are displayed in the distributions.

B. Terminology Explanation
Neural collapse (NC): Papyan et al. [13] revealed the
neural collapse phenomenon, where last-layer features and
classifier vectors converge to form a simple Equiangular
Tight Frame (ETF) at the terminal phase of training (after
0 training error rate) on balanced datasets. A standard
simplex ETF is a collection of vectors in RK that satisfy
the following properties:

W
′
=

√
K

K − 1

(
IK − 1

K
1K1⊤

K

)
, (1)

where W
′
=

[
w

′

1, . . . , w
′

K

]
∈ RK×K is a matrix com-

posed of K vectors, IK denotes the identity matrix, and 1K

is an all-ones vector. In this manner, W ′ itself, or transfor-
mations obtained by applying an orthogonal transformation
from the left (e.g., Ŵ = UW ′, where U ∈ Rd×K (d ≥ K)
is an orthogonal rotation matrix satisfying U⊤U = IK)
could preserve the same length and angle for any pair of
vectors. In other words, all vectors in W

′
have an equal ℓ2

norm and the same pair-wise angle as follows:

w
′⊤
i w

′

j =
K

K − 1
δi,j −

1

K − 1
,∀i, j ∈ {1, . . . ,K}, (2)

where δi,j equals to 1 when i = j and 0 otherwise. The
pairwise angle − 1

K−1 is the maximal equiangular separa-
tion of K vectors in Rd.

As pointed by reference [19], the NC phenomenon in-
cludes four important geometric properties as follows:
1. The last-layer features of the same class

collapse to their class mean: ΣW → 0, and
ΣW = Avgi,k

{
(zk,i − zk) (zk,i − zk)

T
}

, where
zk,i is the feature of sample i in class k, and zk is the
class mean of representations from the class k.

2. The class means (ẑk, 1 ≤ k ≤ K) centered at their
global mean converge to the vertices of a simplex ETF,
and ẑk = (zk − zG) / ∥zk − zG∥ with zG is the global
mean of the last-layer features for all samples.

3. The classifier prototypes could also converge to the
same simplex ETF like the class means ẑk, i.e., ŵ

′

k =

w
′

k/
∥∥∥w′

k

∥∥∥ = ẑk, 1 ≤ k ≤ K, where w
′

k is the classifier
prototype of the k-th class.

4. The learned classifier behaves like the nearest classifier:
argmaxk

〈
z, w

′

k

〉
= argmink ∥z − zk∥, where ⟨·⟩ is

the inner product operator, z is the last-layer feature of a
sample for prediction.
Therefore, by initializing our VQA classifier using Ŵ ,

the classifier inherently retains the aforementioned prop-
erties, which contribute to improved performance in ad-
dressing the challenges posed by long-tailed distributions.

However, as discussed in the main paper, we identify two
limitations: first, initializing a simplex ETF classifier with
fixed directions may hinder the model’s generalization ca-
pability. Second, a simplex ETF can only exist when the
feature dimension d exceeds the number of classes K,
which is often impractical in real-world VQA scenarios
where the number of classes varies significantly. Therefore,
we introduce the learnable orthogonal matrix U∗ to further
refine Ŵ , i.e., W ∗ = U∗W

′
, which not only ensures

that W ∗ preserves the equiangular property of W
′

but also
keeps it optimal for each class by dynamically learning the
appropriate prototype directions of W

′
, thereby enhancing

the model’s generalization and improving its discriminative
ability under the long-tailed distribution.
Optimal Transport (OT): OT [14] typically aims to find
the most cost-effective way to transform one distribution
into another, which is achieved by calculating a transporta-
tion plan that minimizes the total transportation cost. This
minimized cost is known as the OT distance. From the
matching perspective, OT provides a geometrically mean-
ingful distance between probability distributions, showcas-
ing its effectiveness in multiple domains of machine learn-
ing [9, 17]. Suppose we have two discrete distributions
in the same arbitrary space: α =

∑n
i=1 aiδxi

and β =∑m
j=1 bjδyj

, where δ is a Dirac function, and ai and bj are
the weight. The discrete optimal transport problem can be
formulated as follows:

T ∗ = argmin
T∈Π(α,β)

n∑
i=1

m∑
j=1

TijCij , , (3)

where T ∗ is the optimal transport plan learned to minimize
the total distance between two probability vectors. The
transport probability matrix T ∈ Rn×m

+ , which satisfies

Π(α, β) :=
{
T |

∑n
i=1 Tij = bj ,

∑m
j=1 Tij = ai

}
. The

cost matrix C ∈ Rn×m
+ represents the distances between

representation xi and yj .
In our paper, we minimize the OT distance between

the multimodal feature distribution over each sample F
from the backbone network and the corresponding balanced
classifier prototype distribution W ∗ in the BCP module.
This alignment of multimodal features with their respective
classifier prototypes helps in mitigating the catastrophic
forgetting caused by feature drift in CLT-VQA.

C. Theoretical Justification
Theorem 1. Given a k-equiangular ETF

{
w′

i

}K

i=1
, where

the inner product
〈
w′

i, w
′
j

〉
= k for any i, j (i ̸= j). w̄′ =

1
K

∑K
i=1 w

′
i is the mean of

{
w′

i

}K

i=1
. Consequently,

{
w′

i −
w̄′}K

i=1
forms a regular simplex, and possess the following

properties:
(1) zero mean:

∑K
i=1

(
w′

i − w̄′) = 0;



(2) equalnorm: ∀i,
∥∥w′

i − w̄′
∥∥ =

√
M(K, k);

(3) equiangular: ∀i ̸= j,
〈
w′

i−w̄′, w′
j−w̄′〉 = N (K, k).

In the following, we provide a detailed proof of the three
properties.
Proof of property (1): The zero mean property can be
proofed as follows:

K∑
i=1

(
w′

i − w̄′) = K∑
i=1

w′
i −Kw̄′ = 0. (4)

Proof of property (2): The equalnorm property can be
proofed as follows:∥∥w′

i − w̄′∥∥2 =
〈
w′

i, w
′
i

〉
− 2

〈
w′

i, w̄
′〉+ 〈

w̄′, w̄′〉
= 1− 2

K

K∑
k=1

〈
w′

i, w
′
k

〉
+

1

K2

K∑
k=1

K∑
n=1

〈
w′

k, w
′
n

〉
= 1− 2

1 + (K − 1)k

K
+
K(1 + (K − 1)k)

K2

= 1− 1 + (K − 1)k

K
.

(5)

Proof of property (3): Given any i, j(i ̸= j), we have:〈
w′

i − w̄′, w′
j − w̄′〉 =

〈
w′

i, w
′
j

〉
−
〈
w̄′, w′

j

〉
−
〈
w′

i, w̄
′〉+ 〈

w̄′, w̄′〉
= k − 2

1 + (K − 1)k

K
+
K(1 + (K − 1)k)

K2

= k − 1 + (K − 1)k

K
.

(6)

For simplicity, we denote 1 − 1+(K−1)k
K as M(K, k)

and k − 1+(K−1)k
K as N (K, k). These will be used in the

following derivations. Next, the focus is on proving that
within the BCP module, the balanced prototypes encourage
the multi-modal representation f to gradually converge to-
ward its corresponding classification prototypes under the
ETF structure. Recall the optimization objective in Eq. (4)
in our main paper:

min
θ,ψ

L∗(v, q; θ, ψ) =
1

|D(t)|+ |M |
∑

(v,q,y)∈D(t)∪M

ℓ (y∗(v, q), y)

=
1

N (t)

K(t)∑
k=1

nk∑
i=1

[
− log

exp
(
[logit(v(t)k,i, q

(t)
k,i)]yi

)
∑K
y=1 exp

(
[logit(v(t)k,i, q

(t)
k,i)]y

)],
(7)

where (v
(t)
k,i, q

(t)
k,i) denotes the i-th sample from class k in

task t, with 1 ≤ t ≤ T , 1 ≤ k ≤ K(t), and 1 ≤ i ≤ nk.
Here, nk represents the number of samples in class k, K(t)

is the total number of classes in task t, and N (t) is the total
number of samples in task t, i.e., N (t) =

∑K(t)

k=1 nk. Since

the problem is separable across T tasks, we only analyze
the t-th task and omit the superscript (t) for simplicity. The
objective in Eq. (7) can be simplified as follows:

min
θ,ψ

L∗(v, q; θ, ψ) = − 1

N

N∑
i=1

log
exp ([logit((vi, qi))]yi)∑K
y=1 exp ([logit((vi, qi))]y)

,

(8)

where logit((vi, qi)) = W ∗fi = W
′
U∗fi, and θ and

ψ denote the parameters of the feature extractor and U∗,
respectively. U∗ is constrained to be an orthogonal matrix.
W ′ =

[
w′T

1 , · · · , w′T
K

]T
is a pre-assigned ETF that remains

balanced throughout continual learning, with each row vec-
tor w

′

i originating from a k-equiangular ETF. Then, Eq. (8)
can be reformulated as follows:

− 1

N

N∑
i=1

log
exp

(
[logit((vi, qi))]yi

)∑K
y=1 exp

(
[logit((vi, qi))]y

)
=

1

N

N∑
i=1

log

(
1 +

∑
j ̸=yi

j∈[K]

exp
(
[logit((vi, qi))]j

−[logit((vi, qi))]yi

))
C1
≥ 1

N

N∑
i=1

log

(
1 + (K − 1) exp

[
1

K − 1

∑
j ̸=yi

j∈[K]

∆
(i)
j

])
,

(9)
where ∆

(i)
j = [logit ((vi, qi))]j − [logit ((vi, qi))]yi

. The
inequality C1 follows from Jensen’s inequality, and the
equality holds when ∀i ∈ [N ], j ∈ [K] (j ̸= yi) ,∃Ri ∈
R,∆(i)

j = Ri. Due to the convexity of the function
x → log(1 + exp(x)), Eq. (9) still follows from Jensen’s
inequality and can be reformulated as follows:

C2
≥ log

(
1 + (K − 1) exp

[
1

(K − 1)N

N∑
i=1

∑
j ̸=yi

j∈[K]

∆
(i)
j

])

= log

(
1 + (K − 1) exp

[
1

(K − 1)N

N∑
i=1

∑
j∈[K]

∆
(i)
j

])
.

(10)
The inequality C2 holds when ∀i ∈ [N ],∃R ∈

R,
∑

j ̸=yi,j∈[K] ∆
(i)
j = R. We first showcase the role of

the balanced vectors in the ETF structure, W
′
, and can

rewrite the expression as follows:

logit((vi, qi)) =W
′
fi =W ′U∗fi

=
[
w′

1U
∗fi, . . . , w

′
KU

∗fi
]T

=
[〈
w′T

1 , U
∗fi

〉
, . . . ,

〈
w′T

K , U
∗fi

〉]T
.

(11)

Due to the fact that the function x → log(1 + exp(x))



is monotonically increasing, we now attempt to bound∑N
i=1

∑
j∈[K] ∆

(i)
j based on Eq. (11) and can be reformu-

lated as follows:

N∑
i=1

∑
j∈[K]

∆
(i)
j

=

N∑
i=1

∑
j∈[K]

(
[logit((vi, qi))]j − [logit((vi, qi))]yi

)

=

N∑
i=1

∑
j∈[K]

(〈
w′T

j , U
∗fi

〉
−
〈
w′T

yi
, U∗fi

〉)

= K

N∑
i=1

〈(
W̄ ′ − w′T

yi

)
, U∗fi

〉
C3
≥ −K

N∑
i=1

∥∥(W̄ ′ − w′T
yi

)∥∥∥∥U∗fi
∥∥.

(12)

The inequality C3 follows from the Cauchy-Schwarz
inequality, and the equality holds if and only if when ∀i ∈
[N ], ∃λi ∈ R+, U∗fi = λi

(
w′T

yi
− W̄ ′). Assuming that

the multimodal feature f has a maximum norm of ρ, we can
further derive the following inequality based on Eq. (12):

C4
≥ −Kρ

N∑
i=1

∥∥(W̄ ′ − w′T
yi

)∥∥. (13)

The inequality in Eq. (13) holds under the assumption
of the feature extractor, and the equality holds if and only
if ∀i ∈ [N ], ∥U∗fi∥ = ρ. We then derive the condi-
tions C1–C4 under which equality holds when the objective
function converges to its minimum value, providing insights
into the characteristics of the learned multimodal features f .
Given a VQA sample (vi, qi, yi), starting from C3–C4, we
have the following:

∥∥U∗fi
∥∥ = λi

∥∥w′T
yi

− W̄ ′∥∥ = ρ, (14)

and for any i ∈ [N ], we have the following:

λi =
ρ∥∥w′T

yi
− W̄ ′

∥∥ =
ρ√

M(K, k)
. (15)

According to Theorem 1, we know that the sequence
of vector

〈
w′T

y − W̄ ′〉K
y=1

is equalnorm and equiangular.
Therefore, the learned multimodal features f will ultimately
also be equalnorm and equiangular. Then return to the logit

of sample (vi, qi, yi), we have:

if y ̸= yi,
[
logit((vi, qi))

]
y
=

〈
w′T

y , λi
(
w′T

yi
− W̄ ′)〉

= λiN (K, k) = ρ
N (K, k)√
M(K, k)

,

if y = yi,
[
logit((vi, qi))

]
y
=

〈
w′T

yi
, λi

(
w′T

yi
− W̄

′)〉
= λiM(K, k) = ρ

√
M(K, k).

(16)
According to Eq. (16), we derive the values of Ri in C1

and R in C2:

Ri = ρ
N (K, k)√
M(K, k)

− ρ
√

M(K, k),

R = ρ(K − 1)
( N (K, k)√

M(K, k)
−
√

M(K, k)
)
.

(17)

D. Computation Efficiency
In the BCP module, the orthogonal projection matrix U∗ is
orthogonalized only once at the beginning of the training
process. During the training phase, it is updated in the
same way as the baseline classifier, following the standard
training procedure. Moreover, the ETF structure, as defined
in Sec. B, is initialized before training based on the specific
number of classes and serves as a fixed target that remains
unchanged throughout the training process. Thus, the main
computational cost comes from the OT distance in MFA.
Next, we will analyze our method in terms of computational
cost and complexity, and the results are shown in Tab. 3.
Computational cost: Tab. 3 presents a comparative anal-
ysis of computational costs associated with our method
and other continual learning approaches in terms of the
number of learned parameters, training time, and mem-
ory consumption. The results indicate that our method
achieves the lowest parameter count among the evaluated
approaches while introducing only a marginal increase in
training time and memory usage. Consequently, we believe
our approach maintains a reasonable computational cost,
particularly considering its performance advantages.
Complexity: To approximate the OT distance between
two discrete distributions of size n, the time complexity
bound scales as O

(
n2 log(n)/ϵ2

)
to achieve ϵ-accuracy

with Sinkhorn’s algorithm, as demonstrated by [3, 7]. In
this paper, for each sample (vi, qi), we push its multimodal
feature distribution toward the corresponding balanced clas-
sifier prototype distribution by minimizing their OT dis-
tance. Thus, the sample-wise time complexity bound scales
as O

(
K2 log(K)/ϵ2

)
, where K is the number of classifier

prototypes. The number of prototypesK is dataset-specific;
for the VQA v2 dataset, K=3129, and for the TDIUC
dataset, K=1589, both of which are much smaller than the
number of features.



Table 3. Computational cost of our method and compared meth-
ods. Param: Learnable parameters. Time: Training time. Mem-
ory: Memory usage.

Methods
VQA v2 TDIUC

Param Time Memory Param Time Memory

EWC [11] 230.54M 2.79h 12.00G 228.17M 2.02h 10.20G
MAS [2] 230.54M 2.26h 14.10G 228.17M 1.93h 13.40G
DER [4] 230.54M 4.07h 16.10G 228.17M 3.27h 14.10G
ER [6] 230.54M 3.60h 12.20G 228.17M 2.32h 10.60G
CVS [18] 231.71M 4.36h 15.40G 229.35M 3.50h 13.00G
VQACL [20] 231.71M 3.80h 13.60G 229.35M 2.41h 11.20G
Ours 226.94M 3.90h 14.30G 225.76M 2.48h 11.80G

E. Compared Methods

To evaluate the effectiveness of our approach, we conduct
comparisons against several state-of-the-art methods,
spanning both long-tailed learning and continual learning
paradigms. The long-tailed learning methods include
LDAM [5] and GCL [12], and the continual learning
approaches comprise regularization-based methods
(EWC [11], MAS [2]), replay-based methods (ER [6],
DER [4], CVS [18]), and the VQA-specific model
VQACL [20]. To ensure a fair comparison, all methods
are implemented using their official code repositories and
integrated with the encoder-decoder architecture introduced
in Sec. 3.2 in our main paper. Specifically,
LDAM [5] introduces a modified loss function to enhance
model generalization on long-tailed datasets by encourag-
ing larger margins for minority classes, effectively address-
ing class imbalance. By adjusting the soft margin loss based
on label distribution, LDAM [5] applies stronger regular-
ization to minority classes while maintaining competitive
performance on majority classes, ensuring a balanced trade-
off across the dataset.
GCL [12] addresses the challenges of distorted embedding
spaces and biased classifiers in long-tailed datasets. By in-
troducing larger Gaussian noise to the logits of tail classes,
GCL effectively pushes tail class samples further from de-
cision boundaries. It mitigates embedding space distortion
and improves classifier calibration, thereby enhancing the
representation and recognition of tail class samples.
EWC [11] is a regularization method and remembers old
tasks by selectively slowing down learning on the parame-
ters that are important for these tasks. To achieve it, EWC
uses the Fisher Information Matrix [15] to estimate the
importance of each parameter and adds an auxiliary L2 loss
between the important parameters learned from the new task
and old tasks.
MAS [2] is also a regularization method and discourages
big changes in parameters that are important for previous
tasks through an additional L2 loss. To estimate the im-
portance of a parameter, MAS measures how sensitive the

predicted output function is to a change in this parameter.

ER [6] is a replay-based approach and randomly stores vis-
ited examples in a fix-sized memory. At each training step,
it randomly samples these stored examples for retraining.
Consistent with our method, the memory size of ER is set
to 5,000 for VQA v2 [8] and 5,000 for TDIUC [10]. Since
ER is well-established and simple to implement, we utilize
it as the baseline of our proposed approach.

DER [4] belongs to replay-based methods and adopts reser-
voir sampling [16] to decide examples to store and replace
from the replayed memory. Specifically, the reservoir al-
gorithm ensures each visited example has the same proba-
bility to be stored in the memory. Based on the memory,
DER designs a dark experience-based knowledge distilla-
tion strategy to match the network’s output logits sampled
throughout the training process, which encourages the net-
work to mimic its original responses for past examples. In
our experiments, the memory size is set to 5,000 for VQA
v2 [8] and TDIUC [10].

CVS [18] is a replay-based method and considers the fea-
ture compatibility between the ongoing and previous data.
To model the feature consistency and mitigate forgetting,
it designs a neighbor-session model coherence loss and an
inter-session data coherence loss. We suggest readers check
Wan et al. [18] for more details about these two losses. As
in our method, the memory size of CVS is set to 5,000 for
VQA v2 [8] and TDIUC [10].

VQACL [20] is a replay-based representation learning
method tailored for continual VQA. While VQACL is
specifically designed for continual VQA, the challenges and
objectives in our work are fundamentally different. Beyond
continual learning in VQA, our study primarily tackles the
long-tailed distribution problem in VQA systems, which
remains an understudied yet crucial aspect. Furthermore,
VQACL introduces a prototype learning module that lever-
ages two complementary feature types: sample-specific
(SS) features, which encapsulate task-specific information,
and sample-invariant (SI) features, which capture stable and
generalizable knowledge. By integrating these features,
VQACL enables the model to effectively mitigate catas-
trophic forgetting while adapting to new tasks. To address
catastrophic forgetting while tackling the long-tailed distri-
bution, we propose two modules. First, the Balanced Classi-
fier Prototype (BCP) Learning module addresses inner-task
prototype drift caused by the long-tailed data distribution,
ensuring balanced class representation across different cate-
gories. Second, the Multi-modal Feature Alignment (MFA)
module mitigates inter-task feature drift by minimizing de-
viations between updated feature representations and their
corresponding classifier prototypes, thus combating catas-
trophic forgetting. Similar to our approach, the memory
size is set to 5,000 for VQA v2 [8] and TDIUC [10].



Table 4. The VQA performance (%) on the standard test set of VQA v2 under the CLT-VQA setting across 9 tasks in the ordered scenario.
The memory size in the replay-based methods is 5,000. The best results are highlighted in bold.

Method Recognition Count Color Subcategory Action Commonsense Type Location Causal AP

Joint 35.55 39.51 61.8 52.94 62.23 71.49 42.03 34.56 16.55 46.30
Vanilla 2.22 0.26 0.04 24.15 31.66 62.65 1.36 6.66 13.50 15.83

LDAM [5] 2.87 0.24 0.03 26.79 34.47 64.41 0.95 4.47 13.70 16.44
GCL [12] 2.92 0.27 0.05 27.97 31.43 63.44 2.25 7.99 12.50 16.54

EWC [11] 18.10 0.27 21.21 34.56 43.82 63.28 12.62 11.10 12.15 24.12
MAS [2] 14.50 0.26 25.95 35.99 44.94 65.32 11.62 9.05 11.85 24.39

DER [4] 11.58 30.75 25.01 38.00 45.51 67.08 17.84 14.86 14.75 29.49
ER [6] 18.30 29.12 38.50 43.57 53.59 65.11 23.02 22.96 14.55 34.30
CVS [18] 15.18 30.65 28.19 41.56 47.82 58.29 19.75 20.65 13.91 30.67
VQACL [20] 22.60 30.02 50.12 47.14 53.62 66.27 30.82 27.81 13.45 37.98
Ours 25.71 32.76 52.73 50.46 55.03 68.73 34.92 31.16 14.75 40.69

Table 5. The VQA performance (%) on the standard test set of VQA v2 under the CLT-VQA setting across 9 tasks in the random scenario.
The memory size in the replay-based methods is 5,000. The best results are highlighted in bold.

Method Recognition Location Commonsense Count Action Color Type Subcategory Causal AP

Joint 35.55 34.56 71.49 39.51 62.23 61.80 42.03 52.94 16.55 46.30
Vanilla 3.98 5.04 59.20 0.20 18.41 0.04 3.80 30.13 15.80 15.18

LDAM [5] 1.73 1.91 66.62 0.27 30.42 0.04 1.61 29.96 12.70 16.14
GCL [12] 2.06 0.83 66.13 0.25 35.23 0 1.85 29.62 12.15 16.46

EWC [11] 17.52 8.23 55.19 0.33 37.00 22.63 15.55 32.61 11.15 22.25
MAS [2] 16.83 9.25 57.04 2.11 36.73 24.11 16.32 38.04 9.45 23.32

DER [4] 11.47 10.87 66.17 31.49 44.57 31.88 14.03 41.46 14.55 29.61
ER [6] 18.67 25.60 64.54 28.10 52.25 32.77 22.46 43.86 12.05 33.37
CVS [18] 15.13 25.29 59.18 31.04 50.12 30.55 18.82 40.45 12.65 31.47
VQACL [20] 21.92 28.72 63.32 31.63 53.15 50.50 31.84 46.71 13.20 37.89
Ours 25.59 33.39 67.00 32.28 55.18 52.79 34.42 49.13 17.95 40.86

Table 6. The VQA performance (%) on the standard test set of VQA v2 under the CLT-VQA setting across 10 tasks in the random scenario.
The memory size in the replay-based methods is 5,000. The best results are highlighted in bold.

Method Recognition Location Judge Commonsense Count Action Color Type Subcategory Causal AP

Joint 34.75 33.76 67.48 68.69 38.71 61.43 61.00 41.23 52.14 15.75 47.49
Vanilla 1.55 3.29 55.23 65.9 0.27 32.04 0.05 0.29 25.78 12.75 19.72

LDAM [5] 1.72 2.36 57.32 66.1 0.34 33.2 0.04 1.32 27.33 13.7 20.34
GCL [12] 2.32 1.73 59.32 66.3 0.33 35.3 0.07 1.98 29.34 13.79 21.05

EWC [11] 16.09 6.55 52.68 60.03 0.12 41.99 20.64 12.61 31.61 12.20 25.45
MAS [2] 14.02 10.10 56.97 63.53 0.18 44.40 17.08 14.60 37.18 12.70 27.08

DER [4] 12.06 10.00 58.49 67.47 28.54 45.76 38.79 15.69 42.43 14.3 33.35
ER [6] 15.71 24.32 60.62 66.74 29.64 49.7 32.32 19.11 41.86 12.5 35.25
CVS [18] 15.15 23.70 60.13 61.93 30.87 49.20 28.76 17.23 39.60 12.65 33.92
VQACL [20] 19.81 25.83 62.47 65.35 31.78 53.02 41.55 24.33 45.72 14.5 38.44
Ours 24.98 28.25 63.48 68.81 32.19 55.88 47.64 31.36 46.79 14.75 41.41



Table 7. The VQA performance (%) on the standard test set of TDIUC under the CLT-VQA setting in the ordered scenario. The memory
size in the replay-based methods is 5,000. The best results are highlighted in bold.

Method Color Counting Object R Scene R Positional R Sport R Attribute Activity R AP

Joint 58.67 50.21 87.08 92.21 29.84 95.49 46.97 49.79 63.78
Vanilla 0 0 0 0 0.04 0 0 31.05 3.89

LDAM [5] 0 0 0 0 0.04 0 0 33.93 4.25
GCL [12] 0 0 0 0 0.04 0 0 34.04 4.26

EWC [11] 13.68 22.86 24.17 42.70 0.34 21.27 6.97 33.93 20.74
MAS [2] 27.20 31.72 26.46 70.04 2.43 27.23 2.40 18.21 25.71

DER [4] 38.25 39.10 55.18 85.88 8.77 59.31 17.03 26.39 41.24
ER [6] 40.85 38.88 71.25 87.02 12.52 63.51 36.09 38.98 48.64
CVS [18] 41.00 34.41 54.43 81.85 11.03 73.46 33.23 33.16 45.32
VQACL [20] 44.32 39.67 66.49 88.10 17.62 82.09 42.27 37.57 52.27
Ours 45.77 39.79 73.36 89.57 17.99 82.57 42.95 45.56 54.69

Table 8. The VQA performance (%) on the standard test set of TDIUC under the CLT-VQA setting in the random scenario. The memory
size in the replay-based methods is 5,000. The best results are highlighted in bold.

Method Object R Color Counting Attribute Scene R Sport R Activity R Positional R AP

Joint 87.08 58.67 50.21 46.97 92.21 95.49 49.79 29.84 63.78
Vanilla 2.17 1.19 0 0 0 0 0 16.47 2.48

LDAM [5] 0.28 13.39 0 0.07 0 0 0 16.40 3.77
GCL [12] 0.26 13.53 0 0.09 0 0 0 16.94 3.85

EWC [11] 57.31 23.98 22.63 0.70 37.23 45.23 23.07 14.19 28.04
MAS [2] 56.79 27.47 38.42 0.82 31.22 45.89 24.86 12.06 29.69

DER [4] 53.39 32.26 38.65 16.95 85.72 51.46 19.08 10.57 38.51
ER [6] 63.6 40.39 39.37 34.57 86.81 77.31 33.55 14.96 48.82
CVS [18] 60.1 35.46 37.74 32.96 85.23 75.45 40.74 12.51 47.52
VQACL [20] 72.63 45.68 40.39 40.02 88.38 79.30 40.04 21.88 53.54
Ours 75.96 45.98 40.59 40.37 89.31 81.14 41.47 22.45 54.66

F. Additional Experimental Results

In this section, we conduct a comprehensive evaluation of
our model across multiple aspects. First, we assess its
performance on individual sub-tasks of VQA v2 [8] and
TDIUC [10], as well as the overall Average Performance
(AP) across all tasks (Sec. F.1). Next, we investigate the
impact of the trade-off parameter λ in Eq. (6) of the main
paper and examine the effect of memory size on model
performance (Sec. F.2 and Sec. F.3). Furthermore, we eval-
uate our approach on a more challenging dataset (VQA-CP
v2 dataset [1]) to assess its robustness and generalizability
(Sec. F.4). Finally, in Sec. F.5, we compare our method
against two continual learning baselines that incorporate
long-tailed strategies by integrating the long-tailed methods
into our baseline. This comparison provides further insights
into the effectiveness of our proposed approach.

F.1. Fine-grained Results for CLT-VQA

In this section, we present fine-grained results across in-
dividual sub-tasks on the VQA v2 [8] and TDIUC [10]
datasets. Specifically, Tab. 4, Tab. 5, and Tab. 6 report
the model’s performance on VQA v2 under the CLT-VQA
setting. These results cover 9 tasks in both the ordered
and random scenarios, as well as 10 tasks in the random
scenario, respectively. Similarly, Tab. 7 and Tab. 8 present
the results on TDIUC, evaluating performance in both the
ordered and random scenarios. Each column in the tables
corresponds to the model’s final performance on the re-
spective sub-task, while the last column summarizes the AP
across all sub-tasks.

Based on the results, we can derive the following conclu-
sions: (1) In the ordered scenario, as shown in Tab. 4 and
Tab. 7, our approach consistently outperforms all compet-
ing methods across all tasks, demonstrating substantial im-



provements. Specifically, compared to replay-based meth-
ods that more similar to our approach (ER [6], DER [4],
CVS [18]), and VQACL [20]), our method achieves an
overall AP improvement ranging from 2.71% to 11.2% on
VQA v2 [8] and 2.42% to 13.45% on TDIUC [10]. A sim-
ilar trend is observed in the random scenario, as presented
in Tables 5 and 8, further validating the robustness of our
method. These results highlight the effectiveness of our
approach in preserving strong discriminative capabilities
across classes in long-tailed VQA datasets while simultane-
ously mitigating catastrophic forgetting caused by feature
drift in the continual learning paradigm. (2) Tab. 6 presents
a more comprehensive evaluation of our method across 10
tasks in the VQA v2 dataset [8]. As observed, our ap-
proach consistently achieves the highest performance across
all tasks, further demonstrating its effectiveness in miti-
gating catastrophic forgetting while effectively addressing
the long-tail distribution. These results provide additional
validation of the robustness and efficacy of our method in
the CLT-VQA setting. (3) The results shown in Tab. 7
and Tab. 8 indicate that LDAM [5] and GCL [12] exhibit
subpar performance on the earlier sub-tasks in TDIUC [10].
This can be attributed to the distinct class sets in each sub-
task, which render TDIUC [10] more challenging compared
to VQA v2 [8]. Furthermore, these methods are primar-
ily designed to address long-tailed distribution issues and
lack mechanisms to effectively mitigate catastrophic for-
getting in continual learning settings. Consequently, their
performance on earlier sub-tasks deteriorates significantly.
However, the performance improvements compared to the
continual learning methods such as EWC [11], MAS [2],
DER [4] and CVS [18] on the final sub-task demonstrates
that LDAM [5] and GCL [12] remain effective for address-
ing long-tailed data. In contrast, our method not only han-
dles long-tailed distributions robustly but also effectively
mitigates catastrophic forgetting, resulting in superior per-
formance across both earlier and later sub-tasks.

F.2. Hyperparameter Selection for Trade-off Pa-
rameter λ

We investigate the influence of an important parameter as
defined in Eq. (6) of our main paper. Specifically, we
train models with λ ∈ {1, 3, 5, 7, 9} in both the ordered
and random scenarios for VQA v2 and TDIUC, with the
results shown in Fig. 3 (a) and Fig. 3 (b), respectively. As
shown in the figure, when λ is too small, the LMFA loss
is too weak, which prevents MFA from effectively aligning
the updated features with the classifier prototypes. When
λ increases, the LMFA loss gradually becomes dominant,
which impairs BCP’s ability to handle long-tailed VQA
data. While λ = 5, our method achieves a relatively high AP
and a lower AF. Therefore, we set λ = 5 in our experiments.
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Figure 3. Performance variation with different λ.
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Figure 4. Influence of memory size on VQA v2: (a) AP , (b) AF ;
and TDIUC: (c) AP , (d) AF .

F.3. Hyperparameter Selection for Memory Size M
Fig. 4 show the model performance across different mem-
ory sizes on VQA v2 and TDIUC dataset in the ordered
scenario, respectively. From these results, we observe that,
compared to the ER [6] and VQACL [20], our method
consistently achieves the best performance, regardless of
the number of stored examples. This demonstrates the
effectiveness of our proposed approach for continual long-
tailed VQA. Additionally, when the memory size increases,
all continual learning methods show clear performance
improvements, indicating that a larger memory capacity
helps mitigate the forgetting problem. To balance model
efficiency and performance, we set the memory size to
M = 5000 in our experiments.

F.4. Experiments on Additional Datasets
In addition to reorganizing two widely used VQA datasets,
VQA v2 [8] and TDIUC [10], based on question types



Table 9. Results on VQA-CP v2 in the setting of CLT-VQA.
M: memory size; Ordered: Ordered Scenario; Random: Random
Scenario; AP: Final Average Performance (%); AF: Average For-
getting (%). The best results are highlighted in bold.

Methods M

VQA-CP v2

Ordered Random
AP(↑) AF(↓) AP(↑) AF(↓)

Joint - 32.44 - 32.44 -
Vanilla 0 12.32 22.34 11.68 23.9

LDAM [5] 0 13.22 17.73 13.14 17.8
GCL [12] 0 13.54 16.64 13.46 16.21

EWC [11] 0 18.03 8.71 18.25 8.57
MAS [2] 0 19.24 7.43 19.22 8.12

DER [4] 5000 21.34 6.36 21.61 6.55
ER [6] 5000 22.55 5.56 22.39 5.72
CVS [18] 5000 20.66 6.99 20.97 6.82
VQACL [20] 5000 24.05 4.82 24.14 3.93
Ours 5000 25.46 3.35 25.36 3.69

Table 10. Comparison of our method with the continual learning
baseline enhanced with long-tailed strategies on VQA v2. The
best results are highlighted in bold.

Method
Ordered Random

AP(↑) AF(↓) AP(↑) AF(↓)

Baseline 34.30 2.90 33.37 3.48
+LDAM [5] 35.33 2.86 35.13 3.43
+GCL [12] 36.64 2.70 36.59 3.24
+Ours 40.69 2.11 40.86 2.59

Table 11. Comparison of our method with the continual learning
baseline enhanced with long-tailed strategies on TDIUC. The best
results are highlighted in bold.

Method
Ordered Random

AP(↑) AF(↓) AP(↑) AF(↓)

Baseline 48.64 7.25 48.82 6.46
+LDAM [5] 49.57 7.21 49.66 6.36
+GCL [12] 50.82 7.04 50.77 6.29
+Ours 54.69 6.06 54.66 5.40

to create a sequence of training tasks, we also evaluate
our method on the VQA-CP v2 dataset [1], an out-of-
distribution (OOD) benchmark. The VQA-CP v2 dataset
is constructed by reconfiguring the training and validation
splits of the VQA v2 dataset, such that the distribution of
answers for each question type differs between the training
and test sets. This modification enables the assessment
of the model’s robustness and its generalization capacity
under OOD conditions. From Tab. 9, we can draw the
following conclusions: (1) All methods experience a perfor-

mance drop when facing the OOD scenario, which demon-
strates that OOD conditions further exacerbate the chal-
lenges in CLT-VQA. (2) Our method consistently achieves
the highest AP and the lowest AF in this challenging sce-
nario, demonstrating its robustness and generalizability un-
der OOD conditions.

F.5. Experiments on Additional Methods
To further validate the effectiveness of our proposed ap-
proach, we compare it against two continual learning base-
lines enhanced with long-tailed strategies by integrating the
long-tailed methods LDAM [5] and GCL [12] into our base-
line. Tab. 10 and Tab. 11 present the results in the ordered
and random scenarios on VQA v2 [8] and TDIUC [10],
respectively. From the tables, we can observe that the long-
tail methods, by using a fixed-size memory, effectively al-
leviate catastrophic forgetting and show improvements over
the Baseline. However, they still fail to adequately address
prototype drift caused by the long-tailed distribution, as
well as feature drift of old classes during continual learning.
In contrast, our method not only maintains strong discrim-
inative power across classes when dealing with long-tailed
VQA data through balanced prototypes but also aligns the
drifted features of old classes with the balanced prototypes,
effectively mitigating catastrophic forgetting.
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