PRIMAL: Physically Reactive and Interactive Motor Model for Avatar Learning

Supplementary Material

Contents
1. Introduction
2. Related Work

3. Autoregressive Diffusion Motion Models
3.1. Preliminaries
3.2. Motion Representation
3.3. Neural Networks
3.4. Inference

3.4.1 . Motion Control with Induced Impulses
3.4.2 . Motion Control with Classifier-based
Guidance

4. Model Adaptation

5. Experiments
5.1. Evaluations on Body Motion Learning
5.1.1. Motion Realism

5.1.2 . Motion Responsiveness
5.2. Evaluations on Model Adaptation

6. Conclusion

7. More Discussions on PRIMAL
7.1. Motivation, Contribution, and Benefits Justi-
fication
7.2. Relations to Hierarchical Approaches
7.3. On Physical Realism Without Simulation . .

8. More Method Demonstrations
8.1. Neural Architecture
8.2. Inference

8.2.1. The Inference Algorithm.
8.2.2. Test-time Processing
8.2.3 . Avatar Reactions to Induced Impulses

9. More Experimental Details
9.1. Baselines for Motion Realism Evaluation . .
9.2. CBG-based Control of Speed and Direction .
9.3. Model Adaptation

9.3.1. Personalized Action Generation . . .

9.3.2. Spatial Target Reaching
9.4. Ablation Studies of PRIMAL
9.5. Default Implementations
9.6. Runtime Analysis.
9.7. Perceptual User Studies

N9

13

13
13
14

14
14
14
14
14
15

7. More Discussions on PRIMAL

7.1. Motivation, Contribution, and Benefits Justifi-
cation

We aim to build a “motor system” for digital avatars en-
abling them to move perpetually and react promptly, like
real humans. This goes beyond existing game engines that
animate characters with canned motions, increasing real-
ism. Inspired by recent advances in motion generation,
PRIMAL generates perceptually realistic motions, general-
izes across body shapes, supports efficient adaptation, and
makes the avatar reactive to impulses. Our experiments and
demos present its potential for game production, and show
that physical simulation is not necessary to produce charac-
ter animations that appear physically realistic.

The key novelty is the formulation that generates 0.5-
second motion given a single initial state. This contrasts
with prior work that generates a long future motion condi-
tioned on a past motion. Its benefits include reducing over-
fitting, making model training easier, and making the avatar
reactive to impulses and classifier-based guidance. Also,
our ControlNet’s advantages over existing ones are demon-
strated in Sec. 4, experiments, and the SupMat video.

To better understand the benefits of our formulation, we
compare two identical settings except the motion length,
where ‘ours’ generates 15 frames given 1 frame, and ‘base-
line’ generates 40 frames given 20 frames. We replace
in-context with cross-attention to handle multi-frame con-
ditioning. Both models are successfully overfit to a bal-
let sequence with 229 frames, and they can reproduce the
ballet conditioned on the start frames. For testing, we
first generate 780 future frames given the end frame(s) of
that ballet sequence. We find ‘ours’ produces ballet stably,
whereas ‘baseline’ gradually fails as time progresses. ASRs
(Line475) are 0.08 (‘ours’) and 0.12 (‘baseline’). Second,
we generate 156 frames, with conditions from another walk-
ing sequence. We find ‘ours’ produces natural transitions to
ballet, whereas ‘baseline’ produces severe artifacts. ASRs
are 0.06 (‘ours’) vs 0.3 (‘baseline’). These results indicate
our setting makes the model more generalizable w.r.t. mo-
tion length and semantics. Fig. Al shows some frames;
videos are online on our website.

7.2. Relations to Hierarchical Approaches

Hierarchical approaches like CLoSD [71] and InsActor [62]
first use a diffusion-based motion planner to generate a fu-
ture motion, and then actuate an agent to track the gener-
ated motion in simulation. We think this hierarchical setting
is not suitable for interactive digital avatars. First, sim-

Long-term ballet generation

Generated motions

Motion condition

Motion condition

Ballet generation from walking

Training data

Generated motions

Figure A1l. Our half-second atomic action setting helps generalization and transition.

ulation tends to produce less natural looking motion than
diffusion-based methods, which is shown by CLoSD’s BPR
in Tab. 1 and the Supplementary Video 6:33. Second, sim-
ulation can bring extra computational costs and complicate
the character animation workflow. PRIMAL only uses the
diffusion model, but models much shorter motions. Unlike
CLoSD (generates 40 given 20 frames) and InsActor (mod-
els more than 100 frames; see their code and SupMat), PRI-
MAL enables faster avatar responses.

7.3. On Physical Realism Without Simulation

We clarify that we do not ensure physical realism. Rather
we generate perceptually realistic motions that look phys-
ically realistic. For example, the motion should not con-
tain visible artifacts such as foot skating or ground pene-
tration. Also, the generated motion should be human-like
and aligned with user preferences. By learning purely from
data, PRIMAL enables physics-like interactions with the
agent (e.g. pushing and pulling). It generalizes to disrup-
tions to the first frame that are out of distribution and re-
sponds naturally in many situations. As mentioned in the
conclusion (Sec. 6), non-physical motions can occur, which
could be overcome by using more training data, e.g. of peo-
ple getting up from the floor.

8. More Method Demonstrations

8.1. Neural Architecture

We formulate our denoising network as G(t, X!, x,) with
transformers [55, 77], and investigate two architectures that
differ in how the initial state is conditioned, as illustrated in
Fig. A2. The first architecture leverages in-context condi-
tioning, in which the diffusion time embedding and the ini-
tial state embedding are first added and then concatenated
with the embedding of the noisy motion segment. We use
SiLU [16, 24, 59] in the feed-forward layers. The second ar-
chitecture follows the DiT network [55] with adaptive layer
normalization [57].

hel
@
r |- A
¥ In-context conditioning
X -
0 ”)
. o Transformer Encoder x K
s]
8 5
é E" E § B S 5 A
Xt £ 2 R TR g XO
g g é g 3]
3 Adaptive LayerNorm
o)
t . g\
&
Yom E-B . s
] ~— = =
_ 8 s € €
3 2 z 2 2 S0
: N 3 - [
Xt - 2 8 g - =l I X
s iz 2 i
8 ||£ g =
a < < <
Figure A2. The diffusion network is formulated as X° =

G(t, X", x). The tea-green layers contain trainable parameters
and the orange blocks are non-learnable operations. The pink
squares denote the tokens at individual frames.

8.2. Inference

8.2.1. The Inference Algorithm

Our motion model learns the distribution of p(X|xg), fol-
lowing the notations in Sec. 3. Given an initial state, the
model generates a motion segment starting with this initial
state, and works recursively to produce an arbitrarily long
motion sequence. This generation process can be refined
and controlled on the fly. The overall inference approach is
summarized in Alg. 1.

8.2.2. Test-time Processing

To further improve the motion quality, we propose the fol-
lowing three processing steps before or after generating
each motion segment. Although they can be used at each
individual DDPM denoising step, this introduces extra com-
putational costs, and we did not observe advantages.

Algorithm 1: The algorithm for generating a mo-
tion segment. Long-term motions can be generated
by applying this approach repeatedly.
Result: A new motion segment
Init: An initial state &, guidance losses (optional);
Step 1: canonicalize the initial state;
1.1 transform the initial state to body-centric coordinates;
1.2 joint re-projection (optional);
Step 2: condition embedding;
Step 3: generation process;
3.1 DDPM reverse diffusion process;
for each denoising step do
predict the clean motion segment;
derive a Gaussian distribution to sample;
compute the gradients of the guidance losses (optional);
update the previous Gaussian distribution (optional);
sample and get a less noisy motion segment;

end
3.2 snapping to ground (optional);
3.3 inertialization blending (optional);
Step 4: transform the motion segment back to world coordinates;

Joint re-projection. As time progresses, the predicted
joints can drift from the SMPL-X body. Inspired by [86],
in each initial state we re-compute the joint locations based
on the predicted SMPL-X parameters, and replace the pre-
dicted joint locations with these re-projected values. We
then use this modified initial state to generate the current
motion segment.

Snapping to the ground. A key aspect of motion realism
is good foot-ground contact. When the model jumps, it may
not fully return to the ground, resulting in foot sliding in fu-
ture frames. To address this, we determine the lowest body
joint over a 0.5 second motion segment. Given our hang-
time assumption, in this time frame, some joint must be in
contact with the ground. We then translate the entire seg-
ment along the vertical direction to “snap” the body on the
ground. Since the motion segment spans roughly the hang-
ing time of jump, this does not degrade the avatar’s ability
to jump.

Inertialization blending. In some cases, especially after
snapping, discontinuities between the initial state and the
generated motion segment can appear, leading to jittering
artifacts. Therefore, we perform inertialization [8, 27] to
smooth the transitions.

Perceptually, these three processing steps reliably im-
prove the motion quality. Their quantitative evaluations are
referred to Tab. AS.

8.2.3. Avatar Reactions to Induced Impulses

A sign of the emergence of physical effects is that the avatar
can react to external impulses promptly and naturally. In
this case, we can control the avatar with impulses to gen-

action perturbed joints perturbing velocities

kick, left leg left knee, left ankle (0,0,0.5)
kick, right leg left knee, left ankle (0,0,0.5)
forward run pelvis, neck, shoulders (0,0,1)
back flip head (0,0,-1)
forward roll head, shoulders, elbows (0,-0.5,0.5)

Table Al. Action generation based on intuitions and straight-
forward principles. These perturbing velocities are in the body-
centric coordinate, and are added to the mentioned joints in the
initial states.

erate certain actions in a principled manner. For example,
we can generate a kick by giving an upward impulse to the
joints on the leg, or generate a run by pushing the avatars
from the back.

In this work, we induce impulses and forces to inter-
act with the avatar, by intervening the initial velocities be-
fore generating a new motion segment. Based on our in-
tuitions, we find some actions can be reliably generated,
shown in Tab. A1. Their experimental results are presented
in Sec. 5.1.2. Automatic solutions to discovering action
principles are interesting to explore in the future.

9. More Experimental Details

9.1. Baselines for Motion Realism Evaluation

We compare our methods with two groups of baselines. The
off-the-shelf group includes the pretrained DiP model [71]
for online text-to-motion generation. We run their released
code to produce 240 sequences of SMPL joint locations at
20fps, based on the test set of HumanML3D [20]. For fair
comparison, we upsample the generated joint locations to
30fps via cubic interpolation and trim them to 240 frames to
compute the quantitative metrics. For the perceptual study,
we fit gender-neutral SMPL-X bodies to the joints via op-
timization, and render the videos with the same pipeline as
ours. We also run the full version of CLoSD [71] based
on their given test set, and obtain the SMPL joint loca-
tions. Then we process and evaluate these results as for the
pretrained DiP. In addition, we run the off-the-shelf Mo-
tionLCM [13], which is a SOTA text-to-motion approach
that runs in realtime. Since its base model focuses on text-
to-motion and is not autoregressive, we use its default mo-
tion lengths for testing to ensure the motion quality. Like-
wise, we upsample the generated joint trajectories to 30fps
before computing the metrics.

The “our implemented” group in Tab. 1 contains the DiP
and the DART [89] diffusion model. Their motion repre-
sentations and pretraining strategies are identical to ours.
To focus on learning the body motion, we remove their
text encoders but keep their key designs. Specifically, our
DiP version conditions the time embedding via cross atten-

Methods ASR| ARD x1073 | e vel. | e dir. | Methods ASR] ARD x10~3 | R-prec. 1
DART diffusion ~ 0.118 3.622 2.532 1.022 scratch training 0.314 0.059 0.96
DiP 0.223 4235 1.341 0.596 finetuning 0.253 0.060 0.87
InContext-8f 0.139 0.773 2519 0.262 Ooéfflcom“’lNet (811 g'i‘ig 8'822 g'gg
InContext 0.109 0.252 1.040 0.140 _ .) .

Table A2. The results of the CBG-based control. ‘err. vel.’ and
‘err. dir.” denote the averaged L2 distances between the generated
velocity/facing direction to their targets.

tion. Based on 20 frames in the past, it generates 40 fu-
ture frames. Our DART diffusion model generates 8 future
frames based on 2 past frames, suggested in [89]. Neither
VAE tokenizers nor scheduled sampling are used. Their
training losses are also based on Eq. (4), except that the re-
constructed past motions are ignored, following their orig-
inal settings. During inference, the three test-time process-
ing steps in Sec. 3.4 (or Sec. 8.2.2) are also applied, in or-
der to reduce artifacts such as ground interpenetration and
jittering.

9.2. CBG-based Control of Speed and Direction

We evaluate the CBG method proposed in Sec. 3.4.2, which
is based on intuition of the movement speed and the di-
rection. The guidance weights of L,ove and Lygeing (see
Sec. 3.4.2) are set to 50 and 25, respectively. We specify
4 target directions to move, i.e. (forward, left, right, back),
and each direction has 2 target speeds of (1m/s, 4m/s). The
target directions are applied to both moving and facing.
Based on each individual initial state and target, we gen-
erate a 3-second motion, leading to 360 generated motions
for each method. To evaluate the performance, we compute
the L2 distance between the generated values and the target
values, as well as the motion realism metrics. Considering
the transition phase, we compute these L2 distances after
1 second. The results are shown in Tab. A2. We find that
DART and InContext-8f are not responsive to the guidance
on the mean velocity, probably because the average velocity
in 0.25 second is highly ambiguous. The DiP model has a
similar problem. Also, it tends to align the semantics be-
tween the past and the future motion, and hence increases
the risk of mismatch between the motion history and the
goal, leading to unrealistic movements. Fig. A3 illustrates
our CBG control process. We can see that the avatar can re-
act to the facing direction guidance within one second. See
Supplemental Video.

9.3. Model Adaptation

We adapt PRIMAL-InContext to the tasks of semantic ac-
tion generation and spatial target reaching. We evaluate two
approaches: 1) We add the control embedding (i.e. the em-
bedding of y in Fig. 3) to the time embedding, and fine-tune
the pretrained model directly. This is also called as injection

Table A3. Results of few-shot adaptation to action generation. All
ANCR results are very close to 1.

in some literature. 2) We implement the motion ControlNet
proposed in [81, 90], in which the control signal is fused to
the input of the ControlNet only once. An exponential mov-
ing average is also applied in the adaptation phase. We de-
note them as finetuning and OmniControlNet, respectively.

9.3.1. Personalized Action Generation

We use Mocapade3.0 [19] to capture 5 stylized action
classes from video at 30fps (Fig. 6). Each class contains
about 5-7 sequences of 5 seconds. We adapt the base model
to this dataset using AdamW [36, 48] with a learning rate of
0.0001, and set the batch size to 16. The training terminates
after 1000 epochs, leading to 19K iterations. In addition to
test our mentioned baselines, we also train our model, i.e.
the one used for finetuning, on this dataset from scratch.

To evaluate the action conditioning, we train an action
label and motion feature extractor via contrastive learn-
ing [12], following the evaluation metrics of [12]. The mo-
tion encoder is a transformer with 4 blocks, 256 latent di-
mensions, and 8 heads. The action encoder is a single em-
bedding layer. These encoders are trained based on our cus-
tomized action data. Since our task is few-shot adaptation
instead of large-scale generalization, we compute the top-1
R-precision (equivalent to classification accuracy here), and
ignore the FID metric that is sensitive to the data size. We
also measure the motion realism as before.

We draw 45 initial states from SFU [1], and generate a 3-
second motion for each individual action. Results are shown
in Tab. A3. We can see that all methods are effective. Train-
ing from scratch and our adaptation method perform best to
reproduce the personalized actions, whereas our method is
more realistic. Another advantage of the ControlNet-based
adaptation is that it supports CFG to manipulate the inten-
sity of the motion style. See the Supplementary Video for
more details.

9.3.2. Spatial Target Reaching

We leverage the same training datasets with InContext of
PRIMAL. The learning rate is fixed to 0.0001, and the batch
size is set to 128. The adaptation phase terminates after 100
epochs or 6.3K iterations.

We draw 45 initial states from SFU as in Sec. 5.1.2. For
each initial state, we specify 8 spatial targets w.r.t. the initial
pelvis location, i.e. (+1.5,0), (0, £1.5), (+1,0), (0,£1) in

speed control

facing direction control

Front, 5m/s

Front, 0.5m/s Front, 1.5m/s

Front, 8m/s

Right, 1.5m/s Front, 1.5m/s Left, 1.5m/s Back, 1.5m/s

Figure A3. Illustrations of CBG-based control. Each column visualizes a motion sequence. The texts at the bottom denote the targets to
achieve. The bars show the generated joint velocities, with darker/brighter color denoting smaller/larger velocity norms.

Methods ASR| ARD x10—3 | err. dist. |
DiP-goal [71] 0.3 - 0.177
finetuning 0.259 0.399 0.071
OmniControlNet [81] 0.249 0.366 0.106
ours 0.338 0.393 0.031

Table A4. Results of adaptation to spatial target reaching. The
ANCR values of all methods are close to 1. Since SMPL-X fitting
is not applied to DiP results, its ARD value is not available.

meters. Besides the above two baselines, we run the off-the-
shelf DiP model [71] conditioned on the above pelvis goal
locations. Each pelvis target also has 45 different motions.
We zero mask the text embedding to let the model focus on
the spatial target conditioning. We use this DiP model to
produce sequences of joint locations, and upsample them to
30 fps via cubic interpolation.

For each target and each initial state, we generate a 2-
second motion, leading to 360 sequences per method. We
compute the minimal distance between the generated pelvis
2D trajectory and the target location for evaluation, as well
as the motion realism metrics.

The results are shown in Tab. A4. We can find that di-
rectly finetuning is an effective approach, and has compa-
rable performance with the two ControlNet-based methods.
Compared to OmniControlNet, our adaptation method leads
to a smaller distance error but slightly worse motion real-
ism, indicating that the control signal has more impact.

9.4. Ablation Studies of PRIMAL

Tab. A5 shows the ablation study results of our PRIMAL
methods, in which different model instances are separately
trained from scratch. In the version of separate tokens, we
follow CAMDM [11] to concatenate the time embedding
and the initial state embedding in the context dimension in-
stead of adding them, in which the activation function is
ReLU. Since InContext consistently outperforms AdaLN,
our ablation studies are mainly based on InContext.

Inspired by [10, 76], we add Gaussian noise with 0.01
standard error to the joint locations and velocities, but no
advantages are observed in our trials. Additionally, the fol-
lowing approaches could not bring consistent better perfor-
mances: 1) replacing SiLU with ReLU; 2) lifting the at-
tention latent dimension from 256 to 512; 3) predicting 8
frames rather than 15 frames; 4) the separate tokens scheme
proposed in [11].

We further investigate the influences of our test-time pro-
cessing approaches. Joint re-projection can slightly increase
the skating ratio and reduce the distances to the AMASS
pose manifold. Inertialization can reduce skating and elim-
inate jittering artifacts effectively. Leveraging both of them
is a good practical balance.

9.5. Default Implementations

By default, in PRIMAL the transformer has 10 blocks and
the dropout ratio is 0.1. In each transformer block, the
self-attention layer has the latent dimension 256 and 8

HumanEva

SFU

Methods ASR| ANCR1 ARD x1073] ASR| ANCR?T ARD x1073|
InContext 0.017 1.0 0.059 0.027 1.0 0.081
AdalLN 0.031 1.0 0.109 0.039 1.0 0.167
InContext w/ noise 0.020 1.0 0.089 0.022 1.0 0.098
InContext, ReLU 0.028 1.0 0.058 0.042 1.0 0.101
InContext, ReLU, separate tokens [11] 0.037 1.0 0.053 0.040 1.0 0.082
InContext, 512d 0.023 1.0 0.072 0.027 1.0 0.105
InContext, 8 frames 0.036 1.0 0.122 0.073 1.0 0.096
InContext

no proc. 0.022 1.0 0.055 0.037 1.0 0.082
+ reproject 0.034 1.0 0.055 0.042 1.0 0.078
+ inertialize 0.015 1.0 0.069 0.028 1.0 0.089
+ reproject + inertialize 0.017 1.0 0.059 0.027 1.0 0.081

Table AS. Ablation studies on the base models. The initial state and every generated motion segments are snapped to the ground. The first
part compares different model architectures. The second part shows the influences of the inertialization and joint re-projection.

Setting Stepl Step2 Step3 Step4 Total

50 denoise steps 8.195 0.138 152.745 3.695 164.773
50 denoise steps + test-time proc. 8909 0.129 152.635 3425 165.099
50 denoise steps + test-time proc. + CBG 9.348 0.138 192789 3.607 205.881
50 denoise steps + test-time proc. + CBG + ControlNet 10.687 0.723 349.729 3.540 364.679
10 denoise steps + test-time proc. + CBG + ControlNet 10.479 0.725 71.660 3.465 86.329

Table A6. Results of runtime analysis to generate a 0.5-second motion segment. The numbers are in millisecond. Step 1-4 are according

to our inference algorithm 1.

heads. The feed-forward intermediate layer has 2048 di-
mensions, and its activation function is SiLU [16, 24, 59].
The DDPM process has 50 steps during training, follow-
ing [11, 64, 71, 89]. We use AMASS [50] to pretrain
our diffusion models °. All sequences are downsampled
to 30fps first. During training, 15-frame motion segments
are randomly extracted from a batch of sequences at each
iteration. We use AdamW [36, 48] optimizer and keep the
learning rate at 0.0001. The batch size is fixed to 512, and
the training terminates after 30K epochs, leading to 480K it-
erations in total. Exponential moving average (EMA) with
decay 0.999 starts to apply after the 1500-th epoch. We use
a single NVIDIA H100 GPU for training, taking 3-4 days
to pretrain a specific version of PRIMAL. During inference,
we use the checkpoints of EMA. By default, the reverse dif-
fusion process takes 50 steps, and the snapping-to-ground
operation (see Sec. 8.2.2) is used.

3

30ur training sets are ACCAD [2], BMLmovi [18], BMLrub [74],
CMU [9], DFaust [7], Eyes Japan Dataset [49], HDMOS [51],
PosePrior [3], SOMA [17], MoSh [47], SSM.

9.6. Runtime Analysis

We implement our methods with a single NVIDIA RTX
6000 GPU to measure the runtime of inference (see
Algo. 1). We generate a 1200-frame motion sequence by
generating motion segments recursively, then we compute
the average runtime of each individual step. The results are
shown in Tab. A6. We can see that all settings can pro-
duce a motion segment within 0.5 second, allowing us to
stream the generated frames to the frontend (e.g. Unreal
Engine) in real time. Additionally, our test-time processing
is efficient. Enabling the CBG-based control brings triv-
ial computation cost, due to their analytical gradients. Our
ControlNet-based adaptor can largely slow down the dif-
fusion, which can be overcome by reducing the denoising
steps. In our trials, we find using 10 denoising steps does
not bring visibly inferior results.

9.7. Perceptual User Studies

We conduct perceptual studies on the Amazon Mechani-
cal Turk platform for both of our experiments mentioned
in Sec. 5.1.1 and Sec. 5.1.2. In summary, we present users
with paired results—one from our method and one from a

Which human motion looks more realistic?

In this task, you will watch two videos, each showing a different human motion
generated by two methods.

Your goal is to decide which motion looks more natural and realistic.

Signs of unrealistic motion to look for:

» Body jittering - the body or body parts are unnaturally shaking

» Implausible body pose - unnatural or awkward postures

» Foot sliding - feet appear to glide or drift when they should be planted

» Penetrating the ground or floating - feet or other body parts should not sink
into the ground or hover above it

Note: you must watch each video at least once before making your choice.

Motion A Motion B

> 0:00/0:08

»> 0:00/0:08

Which human motion looks more realisti
listed above?

ing the pr

Motion A Motion B
@ O

Figure A4. Layout of the motion realism perceptual study. Partici-
pants are presented with two videos of rendered motions and need
to pick the more realistic one, according to the instructions.

baseline method. Users choose the result they prefer, and
we report the percentage of cases in which the baseline is
preferred. The layouts of the two perceptual studies are
shown in Figs. A4 and AS.

Besides only allowing experienced and highly rated par-
ticipants, we take several precautions in our study proto-
col to ensure reliable results. Each assignment contains 57
comparisons, i.e. pairs of videos. The first 3 are intended as
warm-up tasks, and the answers to these are not considered
during evaluation. There are 4 catch trials too. These are
intentionally obvious comparisons that help us identify par-
ticipants who are providing random inputs. We discard all
submissions where even a single one of the four catch trials
is failed: 6 out of a total of 55 assignments.

To eliminate bias, the order of the other 50 actual com-
parisons is shuffled within an assignment, and the two sides
of each comparison are randomly swapped too. All meth-
ods use the same rendering pipeline.

Which human motion matches the given action command better?

In this task, you will watch two videos, each showing a human performing a specific
action. This action is written below the videos.

Your goal is to select the video in which the motion is more natural and that matches
the given action command better.

Note: you must watch each video at least once before making your choice.

Motion A Motion B

> 0:00/0:03

Which human motion is more natural, and matches the given action
command better?

Motion A Motion B
O ®

Next Video

Figure AS. Layout of the action generation perceptual study. Be-
low the instructions, participants are presented with two videos of
rendered motions and a common action label.

	Introduction
	Related Work
	Autoregressive Diffusion Motion Models
	Preliminaries
	Motion Representation
	Neural Networks
	Inference
	Motion Control with Induced Impulses
	Motion Control with Classifier-based Guidance

	Model Adaptation
	Experiments
	Evaluations on Body Motion Learning
	Motion Realism
	Motion Responsiveness

	Evaluations on Model Adaptation

	Conclusion
	More Discussions on PRIMAL
	Motivation, Contribution, and Benefits Justification
	Relations to Hierarchical Approaches
	On Physical Realism Without Simulation

	More Method Demonstrations
	Neural Architecture
	Inference
	The Inference Algorithm
	Test-time Processing
	Avatar Reactions to Induced Impulses

	More Experimental Details
	Baselines for Motion Realism Evaluation
	CBG-based Control of Speed and Direction
	Model Adaptation
	Personalized Action Generation
	Spatial Target Reaching

	Ablation Studies of PRIMAL
	Default Implementations
	Runtime Analysis
	Perceptual User Studies

