PerLLDiff: Controllable Street View Synthesis Using Perspective-Layout
Diffusion Model

Supplementary Material

The supplementary material is organized into the follow-
ing sections:
* Section A: DDPM Preliminaries
¢ Section B: Implementation Details
* Section C: Limitation and Future Work
 Section D: Additional Experiments
* Section E: Visualization Results

A. DDPM Preliminaries

Denoising Diffusion Probabilistic Models (DDPM) [3] are
a class of generation models which simulate a Markov
chain of diffusion steps to gradually convert data sam-
ples into pure noise. The generative process is then re-
versed to synthesize new samples from random noise.
We commence with an observation xy sampled from the
data’s true distribution ¢(z), and then progressively apply
Gaussian noise over a series of 7' time steps. The for-
ward diffusion is mathematically defined as q(x¢|z;—1) =
N (zy;v/1 = By 1, BiI),, where B, is a variance term that
can be either time-dependent or learned during training.
The entire forward diffusion process can be represented as
the product of the conditional distributions from each step:

T
CU1 T|$0 Hq $t|9ﬁt 1 (D
t=1

where the sequence {3; }7_, specifies the noise schedule ap-
plied at each timestep. The diffusion process is notable for
permitting direct sampling of z; from zy using a closed-
form expression:
Vagwg + 1 — age, where €~ N(0,1),
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in which oy = 1 — (; and the cumulative product a; =
Hizl as. To synthesize new samples, a reverse process
known as the backward diffusion is learned, which concep-
tually undoes the forward diffusion. This inverse transition
is captured through a parameterized Gaussian distribution:

:N(xt—1§ﬂ0(xt)va§<xt)l)' 3)

Q($t|$0) =

pe(iﬂt—1|$t)

B. Implementation Details

PerLDiff utilizes the pre-trained Stable Diffusion v1.4 [9],
augmented with specific modifications to enhance scene
control. Training was conducted on a server equipped with
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Figure 1. Failure cases of PerLDiff, with red markers highlighting
instances where, compared to the ground truth, PerLDiff generates
images with the front and rear of vehicles reversed.

eight Tesla V100 (32 GB) GPUs over 60,000 iterations,
which required two days. An initial batch size of 16 was
adjusted to a per-GPU batch of two for focused optimiza-
tion, particularly for data samples comprising six view im-
ages per frame. The generation of samples conforms to the
CFG rule [2], employing a guidance scale of 5.0 and the
DDIM [10] across 50 steps.

For scene manipulation, the text encoder within Stable
Diffusion is retained, along with a weight-frozen CLIP to
manage textual inputs and ConvNext for processing road
maps. Feature extraction from PerL boxes is conducted via
an MLP, optimized through PerL-based controlling module
(PerL-CM) with randomly initialized weights. In contrast,
certain modules inherit and freeze pre-trained weights from
Stable Diffusion. The key parameters within PerL-CM, ),
and ), are set to 5.0 to facilitate optimal image synthesis.
Furthermore, DDIM [10] and CFG [2] are integrated into
our training regimen, with a novel approach of omitting all
conditions at a rate 10% to foster model versatility.

The optimization process employs AdamW [8] with-
out a weight decay coefficient and with a learning rate of
5 x 10~°, complemented by a warm-up strategy during the
first 1,000 iterations. BEVFormer [6], StreamPETR [11],
and CVT [16] were retrained using original configurations
tailored to our target resolution. The performance of BEV-
Fusion [7] and MonoFlex [15] was assessed using their pro-
vided code and pre-trained weights.

C. Limitation and Future Work.

Fig. 1 depicts several failure cases of PerLDiff, where the
model erroneously generates vehicles with the front and
rear orientations reversed, in contrast to the ground truth.
This limitation arises from the usage of a PerL mask in
PerLDiff, which does not account for the orientation on
the 2D PerL plane. Future endeavors may explore video
generation, extending to work such as DrivingDiffusion [4],
Panacea [ 3], and Driving into the Future [12].



Table 1. Controllability comparison for street view image gener-
ation on the NuScenes validation set. A quantitative evaluation
using 3D object detection metrics from BEVFusion [7].

Method FID] ‘ mAPT NDST mATE| mASE|] mAOE]|

‘ 3554 4120 0.67 0.27 0.56

MagicDrive [1]  16.59 | 20.85  30.26 - - -
BEVControl* 1594 | 13.19 1991 0.94 0.34 0.96
PerLDiff (Ours) 15.67 24.69 30.71 0.82 0.28 0.76

Oracle

D. Additional Experiments

In this section, we present additional experiments con-

ducted to validate controllability at different resolutions

(256x 704) and to assess the contributions of individual

components within our PerLDiff. Our studies focus on the

following aspects:

» Effectiveness of Controllable Generation on NuScenes
(Subsection D.1)

* Effectiveness of Perl-based Cross Attention (Object)
(Subsection D.2)

* Effectiveness of View Cross-attention for Multi-View
Consistency (Subsection D.3)

¢ Effectiveness of PerLDiff Based on ControlNet (Subsec-
tion D.4)

o Effectiveness of Classifier-Free Guidance Scale (Subsec-
tion D.5)

Our results confirm the superior performance of our method

across various resolutions and illustrate how each compo-

nent is integral to the success of our PerLDiff.

D.1. Effectiveness of Controllable Generation on
NuScenes

In Tab. 1, we conduct a comparative analysis to empha-
size the capabilities of PerLDiff for controllable genera-
tion at a resolution of 256x704. This quantitative evalu-
ation contrasts our method with other leading approaches
based on the detection metrics provided by BEVFusion [7].
Our PerLDiff exhibits significantly superior performance,
achieving mAP improvements of 3.84% and 11.50%, and
NDS increases of 0.45% and 10.80%, compared to Mag-
icDrive [1] and BEVControl*, respectively. These results
confirm the efficacy of PerLDiff in the precise controllable
generation at the object level.

D.2. Effectiveness of Perl-based Cross Attention
(Object)

To facilitate a better understanding of PerLDiff, we provide
a detailed explanation of the PerL-based cross-attention
(Object). As shown in Fig. 2, MagicDrive [ 1] utilizes text
cross-attention from Stable Diffusion to implicitly learn a
unified feature that concatenates text, camera parameters,
and bounding boxes in the token dimension. In contrast,

//// M—;

PerLDiff Magchrive

Figure 2. Overview of the PerL-based cross-attention (Object).
MagicDrive employs text cross-attention to create a unified fea-

ture, while PerLDiff uses the PerL. masking map to allow for pre-
cise control of pixel features for each object.

Table 2. Impact of integrating the PerL. masking map (Object)
into MagicDrive. We present the 3D object detection results based
on BEVFormer [6], with outcomes showing superior performance
emphasized in bold.

Method ‘FIDi mAPT NDSt mAOE| mAVE| mATE]

MagicDrive 1592 1521 28.79 0.81 0.57 0.95
MagicDrive + Mask | 16.68 15.54  29.77 0.73 0.56 0.89

PerLDiff employs the PerL masking map as a prior, al-
lowing each object condition to precisely control the cor-
responding pixel features. This results in more accurate
positioning and orientation of objects in the generated im-
ages. Additionally, we integrated the object mask into the
token dimension corresponding to the bounding box. As
shown in Tab. 2, the results indicate improvements in BEV-
Former, with NDS (e.g., 29.77 vs. 28.79 for MagicDrive)
and mAOE (e.g., 0.73 vs. 0.81 for MagicDrive) demon-
strating the effectiveness of PerLDiff in enhancing the per-
formance of MagicDrive. Note that MagicDrive utilizes a
single attention map for managing text, camera parameters,
and boxes in the cross-attention process. Consequently, our
ability to make improvements is constrained by the limited
scope available for modifying the attention map within this
architecture.

D.3. Effectiveness of View Cross-attention for
Multi-View Consistency

View cross-attention ensures the seamless integration of vi-
sual data by maintaining continuity and consistency across
the multiple camera feeds that are integral to current
multi-functional perception systems in autonomous vehi-
cles. Typically, autonomous vehicles feature a 360-degree
horizontal surround view from a BEV perspective, result-
ing in overlapping fields of vision between adjacent cam-
eras. Consequently, we facilitate direct interaction between
the noise maps of each camera and those of the immediate
left and right cameras. Given the noisy images from the
current, left, and right cameras, designated as Z;, Z;, and
Z,., respectively, the output of this multi-view generation is
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Figure 3. Comparative visualization of outputs with (Top) and
without (Bottom) view cross-attention. Red markers highlight dis-
continuities in the images generated without view cross-attention.

Algorithm 1 PerL-based Controlling Module (PerL-CM)

Input: road map features H,, € R'*¢, road masking
map M, € RIWX1 box features H, € RM*C box
masking map M, € RIWXM 'scene text description
features Hy € R, noisy multi-view street image
feature Z € RYW*C and dimension d (omit the detail
of multi-view perspectives)
Output: Updated Z

1: A, < softmax(\, - M, + ZHL /\/d)
// compute attention map for the road map in PerL-
based cross-attention (scene)

2. Zg +—vs - AsH,,, + Z

3. Ap + softmax(Ny - My + ZSHbT/\/g)
// compute attention map for the box in PerL-based
cross-attention (object)

4 Zp < v - AyHyp + Zs

5: 7 <+— 7y + C(Zb, Z;, Zl) + C(Zb7 Z,, Zr)
// maintain visual consistency via View cross-attention

6: Z* < softmax(ZHY /\/d)Hy + Z
// alter illumination and atmospheric effects by Text
cross-attention

given by:
Z=127y+C(Zy,Z1,Z) +C(Zy,Z,,Z,), (4

where C(-) represents the standard cross-attention opera-
tion, which accepts three input parameters: query, key, and
value, respectively. This approach systematically integrates
spatial information from various viewpoints, enabling the
synthesis of images that exhibit visual consistency across
distinct camera perspectives. Fig.3 offers a visual compari-
son of the model output with and without the application of
view cross-attention. Upon integrating view cross-attention
into PerLDiff, the procedure of the PerL-CM is detailed in
Algo. 1.

Table 3. Ablation study comparing PerLDiftf with a ControlNet-
based model. We present 3D object detection results based on
BEVFormer, BEVFusion. Outcomes demonstrating superior per-
formance are highlighted in bold.

Method FID| ‘ mAPt NDST mAOE|
ControlNet-based BEVFormer 20.46‘ 18.07 28.48 0.87

Detector

GLIGEN-based 13.36 | 25.10 36.24 0.72

ControlNet-based BEVFusion 20.46 | 1045 15.29 0.89

GLIGEN-based 13.36 | 1524 24.05 0.78
Pe:rL])iff Con/trolN et+Mask

Figure 4. Training curves of PerLDiff and ControlNet-based, il-
lustrating that Ours converges more rapidly during training.

D.4. Effectiveness of PerLDiff Based on ControlNet

In Tab. 3, we present an ablation study that replaces the ar-
chitecture of PerLDiff with a ControlNet-based [14] model
trained only on view cross-attention in Stable Diffusion. As
shown in Tab.3, the performance of the ControlNet-based
model is inferior to that of PerLDiff. Furthermore, Fig. 4 il-
lustrates that PerLDiff employs a network architecture sim-
ilar to GLIGEN [5], allowing it to converge more quickly
on smaller datasets, such as NuScenes, compared to the
ControlNet-based.

D.5. Effectiveness of Classifier-Free Guidance Scale

In Tab. 4, we assess the effect of the CFG [2] scale on the
sampling of data generation. The term “scale” refers to the
CFG scale, which is adjusted to balance conditional and un-
conditional generation. The transition from Method (b) to
(e) indicates an increase in the CFG scale from 5.0 to 12.5.
The results show an average increase of 2.87 in FID, an av-
erage decrease of 0.87% in mAP, an average reduction of
1.03% in NDS, a 0.02% increase in mAOE and a 1.07%
drop in Vehicle mloU. This provides substantial evidence
that an excessively large CFG scale can degrade the qual-
ity of generated images and adversely affect various perfor-
mance metrics.

E. Visualization Results

To further demonstrate the controllable generation capa-
bilities of PerLDiff, we present additional visual results.
Fig. 5 offers extended examples illustrating the superiority
of PerLDiff in scene controllability, while Fig. 7 highlights
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Figure 5. Qualitative comparison with MagicDrive. For scene controllability, PerLDiff demonstrates superior performance by results

consistent with ground truth road information. Regions highlighted by

Table 4. Comparison of different CFG [2] scale to each metric. We
report the 3D object detection results based on BEVFormer [6] and
BEV Segmentation results based on CVT [16].

Road  Vehicle
Method scale | FID] mAPT NDST mAOE| mloUt  mloUt
Oracle - | - 27.06  41.89 0.54 | 7035  33.36
(a) 25 | 1236 2389 3603  0.70 60.05  26.95
(b) 50 | 1336 2510 3624 072 6126 2713
(©) 75 | 1552 2462 3560 074 61.52  26.63
(d) 10.0 | 1632 2420 3505  0.73 6143  26.00
(e) 125 | 1686 23.86 3498  0.74 6125  25.55

Ground Truth BEVControl* PerLDiff

Figure 6. Qualitative results of the generated images reveal dis-
crepancies in background details. As indicated by the cir-
cle, PerLDiff produces background elements that do not align with
real images due to the incorporation of the PerL masking map.

its effectiveness in controlling object orientation. Fig. 8 re-
veals that BEVControl* produces chaotic and indistinct at-
tention maps leading to suboptimal controllability, PerLDiff
optimizes the response areas of the attention map, resulting
in accurate object-level control.

Table 5. Comparison with Panacea on synthetic 256704 valida-

tion data. The quantitative evaluation using 3D object detection
metrics from StreamPETR [11].

Method | FID| | mAPt NDST mAOE| mATE| mAVE|
Oracle | - | 4705 5624 037 0.61 0.27
Penacea 16.96 | 22.50 36.10 0.73 - 0.47
PerLDiff | 15.67 | 3509 44.19  0.64 0.75 0.45

circles indicate areas where fail to align with ground truth.

Additionally, it is worth noting that, based on our exper-
imental results as shown in Tab. 5, the key for temporal-
based detection models lies in accurately positioning and
categorizing objects in each frame; detailed information
about objects, such as color and brand, is not crucial. As
illustrated in Fig. 9, when provided with continuous frame
inputs, the generated images by PerLDiff ensure that the po-
sitions and categories of objects, along with the road map,
are consistently aligned with the specified conditions be-
tween adjacent frames.

Moreover, Fig. 10 displays scene alterations by PerL.D-
iff to mimic different weather conditions or times of day,
showcasing its versatility in changing scene descriptions.
Furthermore, as illustrated in Fig. 6, PerLDiff generates
background details that do not fully align with those of real
images. This discrepancy arises because PerL.Diff incorpo-
rates prior constraints to ensure accuracy in object detec-
tion, which can, in turn, negatively impact the fidelity of the
background details.

Finally, Fig. 11 presents samples from KITTI validation
set, illustrating the application’s performance in real-world
conditions.



Reference image MagicDrive PerLDiff

Figure 7. Qualitative comparison with MagicDrive. For object controllability, PerLDiff exhibits superior performance by generating
objects at arbitrary angles. Regions highlighted by red circles denote scenarios where the images fail to achieve correct orientation.

BEVControl* PerLDiff

Figure 8. Visualization of cross-attention map results. From left to right, we present the generated images and corresponding cross-attention
maps from our baseline BEVControl* and our PerLDiff. BEVControl* produces disorganized and vague attention maps, which result in
inferior image quality. Conversely, PerLDiff method fine-tunes the response within the attention maps, resulting in more accurate control
information at the object level and improved image quality.



Figure 9. Qualitative visualizations from the NuScenes. PerLDiff demonstrate consistent alignment of object positions and categories,
along with the road map, when provided with continuous frame inputs, ensuring coherence between adjacent frames.
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Figure 10. Qualitative visualization on NuScenes demonstrating the effects of Text Cross-attention. From top to bottom: day, night, and
rain scenarios synthesized by PerLDiff, highlighting its adaptability to different lighting and weather conditions.



Figure 11. Visualization of street view images generated by our PerLDiff on KITTI validation dataset. We show the ground truth (left) and
our PerLDiff (right).
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