®-GAN: Physics-Inspired GAN for Generating SAR Images Under Limited Data

Supplementary Material

1. Details of the physical model
1.1. PSC model

According to the geometric diffraction theorem, the ideal
point scattering center (PSC) model can be articulated as a
linear combination of N independent PSC points, as demon-
strated in Equation 1:

N
B(f.6) = Y Avexp(—j L (n;cos ptyising). (1)
i=1
Here, E denotes the measurement in the frequency domain.
A; and exp(-) represent the response intensity and phase
information of the radar echo associated with the ith PSC,
respectively. 7 = \/—1 denotes the imaginary unit, while
c signifies the velocity of propagation (i.e., light velocity).
f and ¢ denote the radar echo frequency and aspect angle,
respectively. z; and y; denote the coordinates of each PSC
in the range and azimuth directions, respectively.

The sparsity of radar echo signals necessitates the applica-
tion of sparse signal theory for the analysis and extraction of
PSC. The PSC model derived from this can be reformulated
as follows:

f=¥(z,y)o @

Here, 7 denotes the vectorization of F, while o signifies the
sparse coefficient vector corresponding to {A4;}Y, in Eq.
1. The symbol U represents a dictionary that encompasses
the positional data of PSCs within the signal domain, corre-
sponding to the exponent term in Equation 1. The dictionary
can be formulated in columns as follows:
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where f and ¢ are vectors evenly sampled P and @ times
within their respective ranges. Here, f is within the inter-
val (fo — B/2, f. + B/2), and ¢ is within the interval
(—Psyn/2, Psyn/2), where B denotes the bandwidth, f,
denotes the center frequency, and ¢, denotes the synthetic
angle.  and y indicate vectors sampled H and W times
in the range and azimuth directions at specified resolution
intervals. Previous study [2] has demonstrated that executing
an inverse Fourier transform on each column of ¥ (x, y) fa-
cilitates the conversion of the dictionary from the frequency
domain to the image domain, hence enabling the solution of
the PSC in the image domain. The image domain representa-
tion of Equation 2 can be explained as follows:

r=%o @

where W represents the dictionary in the image domain and
r denotes the input complex-valued image following vec-
torization. Consequently, o can be derived by resolving the
optimization problem defined in Equation 5.

6 = argmin ||Po — r||2 + A||o||1. %)
o

1.2. Hyperparameters setting for the dictionary

Given that the targets often fall within the central 80 x 80
region, we construct the dictionary specifically for this area,
setting the sampling numbers P, (), H, and W all to 80,
resulting in a fixed dictionary with dimensions of 6400 x
6400. More details of the hyperparameters relevant to the
construction of the dictionary are presented in Table 1.

Hyperparameter Value Hyperparameter Value
fe 9.599¢e9 B 0.591e9
Dsyn 2.3° c 3e8
ZLinterval 0.202 Yinterval 0.202
H 80 W 80
P 80 Q 80

Table 1. The hyperparameters setting for the dictionary

1.3. Complex-valued SAR image processing

In the PSC model, complex-valued electromagnetic waves
are processed to characterize the scattering behavior of tar-
gets. However, our method generates only amplitude data
representing the strength of target echoes, without phase
information. To facilitate end-to-end training, we append
synthetic phase values, sampled from a uniform distribution
over [0, 27), to the generator’s output 4, thereby synthesizing
a complex-valued SAR image. In general, SAR phase data
are uniformly distributed over [0, 27) in scenarios where
no dominant coherence or geometric structure exists. This
aligns with speckle theory and established statistical prin-
ciples [1]. Consequently, this approach approximates SAR
data with random, uniformly distributed phases, suitable for
applications where phase coherence is not a primary concern.
We also keep the amplitude information of the output of PSC
reconstruction J}, to obtain s and 3, and the loss functions
are calculated without phase information.

2. Datasets

We utilise three different SAR image datasets in our exper-
iments: MSTAR, SAR-Airplane and OpenSARShip, in a
variety of dataset sizes and target types. Some of the training
samples are shown in Fig.1.
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Figure 1. The illustration of azimuth angle and depression angle of SAR imaging geometry. Training samples of the three datasets used in

the experiment.

Figure 2. Visual comparisons between scattering point extraction method, namely Harris-Laplacian corner detection and PSC. From top to
bottom: real images, HLC results of real images, PSC reconstruction results of real images, generated images by ®-GAN(w/ HLC), HLC
results of generated image by ®-GAN(w/ HLC), generated images by ®-GAN(w/ PSC), PSC reconstruction results of generated images by

d-GAN(w/ PSC).

* MSTAR : The moving and stationary target acquisition
and recognition (MSTAR) dataset is the most widely used
dataset in the sar target generation task. MSTAR consists
of ten-class vehicles collected at different viewing angles,
at a resolution of 0.3mx0.3m, taken by an X-band SAR

sensor. The azimuth angle ranges from 0° to 360°, with
an approximate interval of 1° to 2°. The depression angles
are 17° and 15°. The demonstrations of azimuth angle and
depression angle can be found in Fig.1. The image size
of MSTAR is 128x128. In our experiments, we uniformly



Table 2. Discuss «. § and +y fixed as 1,1,

a | FID() KID() 5| FID() KIDQ) v | FID() KID()
0.4 | 673.4226  1.0969 1 | 1325429  0.0974 1 | 132.5429 0.0974
0.6 | 132.5429  0.0974 5 | 9254651 15387 5 | 139.2050  0.1057
0.8 | 135.2127 0.1008 10 | 11554966 2.2148 10 | 130.2311  0.0861

Table 3. Discuss . « and 7y fixed as 0.6,1,

Table 4. Discuss 7. « and [ fixed as 0.6,1,

respectively. respectively. respectively.
10% MSTAR 5% MSTAR Method  10% MSTAR 5% MSTAR

Method Uncertaint Accurac Uncertaint Accurac
y y y y withoutaug  75.67% 49.11%
ACGAN 0.1961 74.9031+£1.1192 0.2599 55.5629+0.6219 Base 83.01% 70.84%
+RLC 0.2570 66.5649+1.5895 0.2901 55.1340+2.6723 +RLC 79.63% 70.80%
+DIG 0.2576 66.2598+1.3447 0.3931 53.0391+0.8384 +DIG 83.02% 65.79%
+Ours 0.0832 89.3691+1.0977 ‘ 0.1332 78.9361+1.0541 +Ours 90.91% 81.75%

Table 5. Additional quantitative results comparisons with other methods.

sample images every 15° azimuth angle intervals from the
images with a depression angle of 17° to obtain obtain 10%
MSTAR dataset with 237 samples for 10-class. Similarly,
the 5% MSTAR dataset with 121 samples for 10-class is
acquired with sampling intervals of 30° azimuth angle.
The rest samples with 17° depression angles are used for
testing and evaluation of image quality.

SAR-Airplane: The SAR-Airplane dataset contains two
different types of airplane, namely Kodiak100 and AT-504
taken by a Ku-band SAR sensor in strip imaging mode,
at a resolution of 0.05m with a depression angle of 45°.
Each type of airplane consists of 72 images, which are
resized to a uniform dimension of 80x80 pixels and the
corresponding azimuth angle information is 0°, 5°, 10°,...,
355°. In our experiments, we uniformly choose instances
of SAR-Airplane in 2 categories every 35° azimuth angle
intervals to obtain the 14% training subset with 10 samples
each category.

OpenSARShip: The VV channel data of GRD products
of OpenSARShip which was obtained by C-band Sentinel-
1 satellites at a resolution of 20mx22m are used in our
experiment. Considering the large range of ship sizes, only
chips which have a size of larger than 80 x 80 pixels
are chosen. All the chips are center-cropped to 80 x 80
pixels as inputs to the generator. Meanwhile, as FID and
KID require sufficient real data as the reference dataset,
samples from two categories including Cargo and Tanker
are selected with 3358 and 403 samples, respectively. In
our experiments, we only use 24 Cargo samples and 22
Tanker samples for training with uniform intervals of 15°
azimuth angle.

OpenSARShip dataset doesn’t provide azimuth angle in-
formation, so we have an additional angle processing step.
Since the x/y-axis of OpenSARShip images correspond
to the range/azimuth direction, respectively, we obtain

Table 6. Few-shot SAR target recognition results.

the azimuth angle according to the following procedure:
1) Use SAM to segment the ship. 2) Obtain the rotated
bounding box (bbx) of the ship. 3) Calculate the horizontal
contained angle 6 € [0, 7) of the rotated bounding box. 4)
Distinguish between the ship bow and stern to determine
the final azimuth as 6 or  + 7.

3. Detailed analyses of Harris-Laplacian Cor-
ner (HLC) detection and our method

Harris-Laplacian Corner (HLC) detection method generates
scale space by convolving the original image with Gaussian
kernel functions of different scale parameters and searches
for candidate corner points in each scale space layer. Inspired
by the autocorrelation function of signal processing, the
Harris Laplace detection algorithm uses the autocorrelation
matrix M for corner detection. The eigenvalues of matrix M
are the first-order curvature of the autocorrelation function.
If both first-order curvature values of a point are large, it is
a corner point. The LOG operator (Laplacian of Gaussian)
is commonly used to detect local feature corners with scale
invariance.

Compared to PSC, the HLC method is sensitive to noise,
and when there is significant noise interference, the HLC
method may not be able to accurately extract scattering cen-
ters. Furthermore, in the training process, the threshold is
fixed which may be too high or too low to some certain
images, resulting in poor extraction performance while PSC
does not have this issue.

Fig.2 shows the visual results of the exacted HLC and
PSC of real images and the corresponding generated images.
It can be seen that speckle noise still remains in some of the
HLC results extracted from the real image which may disturb
the learning of targets while the extracted PSC only contains
vital information of the targets. Additionally, compared to
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Figure 3. From left to right: FID for our methods with varying «, [ and ~y,respectively.
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Figure 4. From top to bottom: visual comparisons between generated images with & = 0.4, o = 0.6 and a = 0.8, respectively with fixed

B=1andy=1.

HLC which are points with significant variations in any
two perpendicular directions, PSC is more sparse and can
offer more important physical information. In that case, it is
easier for the network to learn crucial physical features under
limited data under the guidance of our proposed method.

4. Hyperparameter ablation studies

We discuss the hyperparameter in Fig.4, 5, 6 and Table 2, 3, 4.
The results show that too small v and too big 3 will impose
too strong constrain on the physical parameters, perhaps
disregarding other image features, which adversely affects
the realism of the generated images. In addition, the model is
not sensitive to the value of . As can be seen from the Fig.4,
5, too strong constrain makes the network fail to capture the
distribution of the background, thus reducing the realism of
the generated images.

5. Additional evaluation results by X-Fake

Table 5 compares the Prob-Eva accuracy and uncertainty
of our method with those of the RLC and DIG methods in
terms of utility. The results show that the RLC and DIG

methods are not well-suited for this task, as both their Prob-
Eva accuracy and uncertainty are worse than the baseline.
In contrast, our method significantly outperforms the base-
line, demonstrating notable improvements in both Prob-Eva
accuracy and uncertainty. The results of Fig.7 further prove
the advantage of maintaining the physical consistency of
our method. Fig.7 (c) and Fig.7 (h) illustrate the differences
between the generated SAR images and their corresponding
counterfactual explanations, with missing details marked in
red and redundant components highlighted in blue. A com-
parison with Fig.7 (c), (f), and (h) reveals that the baseline
method struggles to clearly generate certain PSC points in
the SAR images, as indicated by the red points in Fig.7 (c).
In contrast, our method is able to generate these PSC points
more accurately and with greater clarity, as evidenced by the
improved results in our approach.

6. Evaluation on few-shot SAR target recogni-
tion

We further analyze the effectiveness of the proposed ®-GAN
by performing a SAR target recognition task with few-shot
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Figure 5. From top to bottom: visual comparisons between generated images with 8 = 1, f# = 5 and 8 = 10, respectively with fixed

a=0.6andvy = 1.
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Figure 6. From top to bottom: visual comparisons between generated images with v = 1, v = 5 and v = 10, respectively with fixed

a=0.6and 5 = 1.

data. Specifically, different GAN models are utilized to aug-
ment the small sample set, and the augmented datasets are
used to train multiple SAR target recognition models for
evaluation. The recognition results are summarized in Table
6. The results demonstrate that the augmented data generated
by our ®-GAN significantly improves the performance of the
recognition model on the 5% MSTAR dataset. This indicates
that ®-GAN effectively enhances learning by enriching the
limited training samples with high-quality synthetic data.

7. Limited data training discussion

We compare the generated results under different limited
training samples, i.e., 10%, 5%, and 3% MSTAR (8 samples

per class). The results are recorded in Table 7. It demon-

strates that our method is effective under 5% and 10% MSTAR
dataset. However, when the the amount of data further de-

creases, it is hard for the Dy, to capture the discriminative

features of the scattering points, thus failing to give posi-

tive guidance to the generator. Our future work will focus

on developing more effective physics-aware regularization

methods to address the challenges posed by increasingly

rigorous data-scarce scenarios in SAR image generation.

8. Encoding more angle conditions

The definition of azimuth angle (AA) and depression angle
(DA) is shown in Fig.l. Azimuth angle is encoded as the
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Figure 7. We evaluate the generated SAR-Airplane images by using the "X-Fake” method. (a) and (d) are generated images by ACGAN and
ACGAN-+ours, respectively. (b) and (e) are the counterfactual explanation results of (a) and (d), respectively. (c) and (f) are the differences
between the generated SAR images and their counterfactual explanations, where the red contents illustrate the missing details of the generated
images. (g) and (h) are the real SAR images with the given class and nearby azimuth angle conditions, and their PSC reconstruction results,

respectively.

Method 10% MSTAR 5% MSTAR 3% MSTAR

VIF(1) FSIM(T) GMSD() FID(]) KID(]) ‘ VIF(1) FSIM(1) GMSD()) FID() KID(]) ‘ VIF(1) FSIM(1) GMSD()) FID() KID(])
Base ‘ 0.0386  0.7432 0.1510 290.0484  0.4548 ‘ 0.0315  0.7291 0.1583 340.2440 04713 ‘ 0.0281 0.7243 0.1632 354.4560  0.5667
+Ours ‘ 0.0781 0.7622 0.1385 87.2719  0.0414 ‘ 0.0547  0.7441 0.1485 130.2311  0.0861 ‘ 0.0217  0.6915 0.1745 705.7391  1.1700

Table 7. Limited data training discussion.

main condition because: 1) Azimuth angle significantly in-
fluences the EM features of ground targets. 2) Some datasets
lack complete angle information (no depression angle infor-
mation). 3) ®-GAN is independent of input conditions and
can be applied to multiple angles. As a result, we also add
some results of encoding both azimuth angle and depression
angle in Tab.8 (10%/5% MSTAR), showing ®-GAN still
works well and makes improvements.

Method AA (10%)  AA+DA (10%) ‘ AA (5%) AA+DA (5%)
ACGAN 290.0484 310.3221 340.2440 316.0579
+Ours 87.2719 104.7421 130.2311 148.1926

Table 8. FID results of encoding AA and DA as conditions.

9. Extrapolation results

Three extrapolation results where training data (10 per class)
is restricted to AA ranges of [0,90], [45,135] and [45,225],
respectively, are shown in Fig.8. We calculate the FID within
every 15 degree range. The results of extrapolation are worse

than interpolation but our method still shows superiority.

The phenomenon is common in GAN-based method due to
its unawareness of the 3D info. of the target. Combining

3D-GAN or NeRF could address this issue which will be
studied in the future.
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Figure 8. Results of generation in extrapolation scenarios.

10. Additional visualization

Fig.9 shows examples from 2S1 and T72 with movable bar-
rels, where ®-GAN generates clearer barrel features at spe-
cific angles than the baseline. Recognition performance for
2S1 and T72 improved by 35.04% and 43.87%, surpassing
the average improvement of 29.95% in Tab.6, demonstrat-
ing ®-GAN’s effectiveness in generating superior features
across various angles and enhancing recognition accuracy.
Fig.10 illustrates the evolution of FID and KID scores for
the generated SAR images throughout the model’s training
process. As the number of training epoch increases, both



Figure 9. Row1-2: 251, T72. Left: GT. Middle: Baseline. Right: ®-GAN.

FID and KID scores decrease more rapidly, ultimately con-
verging to lower scores in our method. This suggests that
our approach is more efficient in capturing image features,
leading to faster convergence and improved performance in
generating high-quality SAR images.

The following Fig.11,12,13,14 provide images generated
on 5% and 10% MSTAR, 1% OpenSARShip and 14% SAR-
Airplane datasets with different approaches. The comparison
highlights the enhancement in image quality achieved with
the application of ®-GAN.

References

[1] Debora Chan, Juliana Gambini, and Alejandro C Frery.
Entropy-based non-local means filter for single-look sar
speckle reduction. Remote Sensing, 14(3):509, 2022. 1

[2] Dongwen Yang, Wei Ni, Lan Du, Hongwei Liu, and Jiadong
Wang. Efficient attributed scatter center extraction based on
image-domain sparse representation. IEEE Transactions on
Signal Processing, 68:4368-4381, 2020. 1



2000 50 0.07
1800 45

1600 40 0.08
1400 35 0.05
1200 \ 30 0.04
9 1000 25
L g0 20 0.03
600 12 0.02
400 5 0.01
200 0
0 0
0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
epoch epoch epoch
4 0.04 0.07
35 0035 0.06
3 0.03 0.05
25 0.025
0.04
a 0.02
X5 0.015 0.03
1 ¥ 0.01 0.02
0.5 0.005 0.01
0 0 0
0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
epoch epoch epoch
(a) (b) (c)
Figure 10. The trends of FID and KID of generated SAR images during model training (from 200th epoch to 2000th epoch).
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Figure 11. Generated images using different approaches on 10% MSTAR dataset. The angles near seen angles are marked in red and the
unseen angles are in blue.
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Figure 12. Generated images of 2S1 using different approaches on 5% MSTAR dataset.The angles near seen angles are marked in red and
the unseen angles are in blue.
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Figure 13. Generated images using different approaches on 14% SAR-Airplane dataset.
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Figure 14. Generated images using different approaches on 1% OpenSARShip dataset.
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