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Figure 1. Additional qualitative evaluation of PolarAnything on scene-level polarization image generation, evaluated on Hammer [5],
HouseCat6D [6], and our dataset.

1. Scene-level polarization image synthesis

To further assess the generalization ability of our model,
we conducted scene-level evaluations on publicly available
datasets, including HAMMER [5], HouseCat6D [6], as well
as our own captured data. Figure 1 shows that PolarAny-
thing is capable of synthesizing correct polarization infor-
mation across various light conditions and objects effec-

tively, demonstrating the generalization performance of our
method.

2. Failure case

As shown in Fig. 2, we show failure cases of our method,
where the generated Angle of Linear Polarization (AoLP)
maps are different from the real-captured ones on surfaces
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Figure 2. Failure cases of PolarAnything. Due to low DoLP on the background scene, the polarization information is not reliable on both
synthesized and real-captured polarization images, considering the sensor noise. Under such a case, the AoLP maps from ours and GT
could be different.

with diffuse reflectances. We conduct analysis as follows.
We first present the formula of AoLP Φ and Degree of

Linear Polarization (DoLP) P:
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where S0, S1, and S2 are components of the Stokes vector
used to describe the state of polarization of light. Specif-
ically: S0 represents the total intensity of the light, which
is the sum of all light components, including both polarized
and unpolarized light. S1 represents the difference in inten-
sities between light polarized horizontally and vertically. It
captures the linear polarization information along the hor-
izontal and vertical axes. S2 represents the difference in
intensities between light polarized at +45◦ and -45◦, cap-
turing the linear polarization information at these diagonal
angles.

For rough surfaces, the DoLP is typically small and ap-
proaches zero. Following (2), we have S1 ≈ S2 ≈ 0, indi-
cating minimal polarization. However, real-world measure-
ments are influenced by noise. To account for this, we intro-
duce two noise terms, ϵ1 and ϵ2, both following a Gaussian
distribution: ϵ1, ϵ2 ∼ N (0, σ2).

Following (1), the AoLP under noise can be denoted as

Φ =
1

2
atan2

(
S1 + ϵ1
S2 + ϵ2

)
. (3)

As S1 ≈ S2 ≈ 0, AoLP exhibits significant variance
under noise, making the AoLP estimates unstable and un-
reliable on rough surfaces. Under such cases, both real-
captured and our synthesized polarization images are noisy,
which could be the possible reason why our results are dif-
ferent from the real-captured ones, as shown in Fig. 2.

3. Captured setup of PolarAnything dataset
The complete shooting process of our dataset is shown in
Fig. 3. The camera we selected is the Triton 5.0 MP Po-
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Figure 3. Capture process of PolarAnything dataset.
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Figure 4. Process of obtaining the “GT” surface normal map.

larization Model (Sony IMX250MYR) [4]. For object se-
lection, we chose approximately 100 objects representing a
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Figure 5. Evaluating PolarAnything on multiview shape from polarization methods PISR [2] and NeRSP [3] on data from [3].

variety of materials. During the shooting process, we aimed
to include at least 2-3 different objects in each frame to
maximize the amount of useful information captured. Our
dataset includes a total of 1,146 polarization images. The
final four polarization images (corresponding to the polar-
ization angles of 0◦, 45◦, 90◦, and 135◦) are demosaicked
from the captured raw images, using a simple bilinear inter-
polation algorithm.

4. Captured setup of PN dataset

The PN dataset mentioned in Sec.4.3 was acquired as fol-
lows: (a) For obtaining the polarization images, we used
a polarized camera [4] under ambient lighting conditions
to capture them directly. (b) For capturing the “GT sur-
face normal map”, we followed the methodology of Dili-
GenT [9]. As illustrated in Fig. 4, we first scanned the sur-
face geometry using an EinScan SP scanner1. Then, we
imported the scanned mesh and the captured images into
Blender [1] for alignment. Once the calibration was com-
pleted, we exported the object’s normal map as the corre-
sponding GT.

5. More results about SfP

Besides the results of PISR [2] shown in Sec.4.3, we present
more 3D reconstruction results from other MVSfP meth-
ods including PISR [2] and NeRSP [3]. As shown in Fig.
5, we add additional results on BALL, DOG, and FROG.
The reconstruction surface normals and meshes using data

1https://www.einscan.com/einscan-sp/
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Figure 6. Glass segmentation results of PGSNet on the RGB im-
age, the captured polarization images, and generated data by Po-
larAnything.

from PolarAnything and real-captured polarization images
are comparable, demonstrating that PolarAnything is capa-
ble of producing physically plausible polarization proper-
ties and benefiting downstream tasks.

6. Application: Glass Segmentation

To assess whether synthetic polarization images could ef-
fectively support downstream tasks, we conducted an eval-
uation on glass segmentation using PGSNet [7], a model
specifically designed to leverage polarization cues. We
tested three types of input: (1) captured polarization im-
ages, (2) RGB-only images without polarization informa-
tion, and (3) polarization images generated by PolarAny-
thing. As shown in Fig. 6, the model achieves comparable
performance when using synthetic and real polarization in-
puts, both of which significantly outperform the RGB-only
setting. These results suggest that the generated polariza-
tion images not only capture meaningful polarization fea-
tures but could also serve as a practical alternative when
real polarization data is unavailable.
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Figure 7. Polarization images synthesized at different angles. Top two rows use ground-truth polarization; bottom two rows use PolarAny-
thing predictions. Reflections are clearly reduced in highly reflective regions.

7. Application: Reflection Control
Polarization images have been proven effective in analyzing
material properties, surface geometry, and reflectance char-
acteristics, due to their sensitivity to the polarization state
of light. One particularly valuable application is the sup-
pression of specular reflections, especially in scenes con-
taining highly reflective surfaces. This capability is physi-
cally grounded in the relationship between the polarization
angle Θ, the Angle of Linear Polarization (AoLP, denoted
as Φ), the Degree of Linear Polarization (DoLP, denoted as
P), and the unpolarized RGB image IRGB, as previously in-
troduced in the main paper and formulated by the following
equation:

IΘ =
IRGB

2
(1 +P cos (2Θ− 2Φ)) , (4)

With AoLP and DoLP predicted by PolarAnything, com-
bined with the RGB image, we can synthesize polarization
images at arbitrary angles Θ. This enables flexible con-
trol over the polarization state without requiring additional
physical captures. We demonstrate this functionality on a
highly reflective ceramic object. As shown in Fig. 7, the
synthesized images at specific angles can significantly re-
duce specular highlights.

These results show that our method can effectively re-
duce reflections by using the predicted polarization param-
eters to synthesize polarization images. This ability broad-
ens the use of polarization techniques, making it possible
to control reflections dynamically. The control can be per-
formed flexibly, without the need to set specific polarization
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Figure 8. Feature extraction module for condition information.

angles during image capture.

8. More details about implementation
As described in the main text, we fine-tuned the diffusion
model Stable Diffusion v1.5 [8] and added a CNN module
for feature extraction. The architecture of the CNN network
is shown in Fig. 8. During model training, making the orig-
inal U-net parameters learnable was found to be beneficial
for the network’s learning process. The results are presented
in Fig. 9 and Table 1.

In the VAE input module, all input images are normal-
ized to the range of [-1, 1], which is consistent with the
input range expected by the VAE. The normalization is per-
formed based on the maximum pixel value of the current
image. We found that this dynamic normalization method
significantly improves the network’s generalization ability.
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Figure 9. Results on different training strategies.

Table 1. Results produced by different training strategies.

Training Strategy PSNR↑ SSIM↑ MAngE↓ MAbsE↓

Frozen U-net 36.82 0.9842 30.12 0.1922
Learnable CNN 41.74 0.9927 25.33 0.1075
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