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A. Dataset Details
A.1. ACDC [2]
The ACDC dataset, publicly accessible, comprises 2D car-
diac MRI scans from 150 patients across five subgroups: (1)
30 normal patients, (2) 30 with previous myocardial infarc-
tion, (3) 30 with dilated cardiomyopathy, (4) 30 with hy-
pertrophic cardiomyopathy, and (5) 30 with abnormal right
ventricles. The acquisitions were obtained using two MRI
scanners of different magnetic strengths (1.5 T and 3.0 T).
Cine images were acquired in breath hold with an SSFP
sequence in short-axis orientation. The spatial resolution
ranges from 1.37 to 1.68 mm2. The dataset includes 100
training and 50 testing subjects. Each sequence has end-
diastole (ED) and end-systole (ES) frames with left ventri-
cle and myocardium labels. Our training set includes 80
patients, the validation set 20 patients, and the testing set 50
patients. ED and ES image pairs are extracted slice-by-slice
from 2D longitudinal stacks, center-cropped to 256 → 256
around the myocardium centroid in ED frames after resam-
pling the pixel spacing to 1mm → 1mm. This process pro-
duces 1266 2D training images, 277 validation images, and
852 testing images. To reduce computational cost, approx-
imately one-quarter of the testing set is randomly subsam-
pled to 213 samples.

A.2. LVQuant [61]
The LVQuant dataset is publicly available and includes
short-axis MR sequences from 56 subjects. The 2D cine
MR images were collected from three hospitals during rou-
tine clinical practice without specific selection criteria, en-
compassing pathologies ranging from moderate to severe
cardiac conditions. Each sequence contains 20 frames of
mid-ventricle slices spanning a complete cardiac cycle, ac-
quired with ECG-gating and breath-holding. Ground truth
segmentations for the endocardium and epicardium are pro-
vided. The MR images have pixel spacings ranging from
0.6 mm to 2.08 mm. Following the preprocessing steps of
ACDC, we resample the pixel spacings to 1mm→ 1mm and
apply a center crop to 256 → 256. End-diastole (ED) and
end-systole (ES) frames are extracted from each sequence,
and myocardium masks are generated by subtracting the en-
docardium mask from the epicardium. The dataset is ran-
domly split into 60/20/20 for training, validation, and test-
ing, resulting in 66 training images, 22 validation images,
and 24 testing images. Due to the limited size of the training
set, it is insufficient for developing a robust source segmen-
tation model. Therefore, only the testing set from LVQuant
is reserved for adaptation experiments.

A.3. MyoPS [28]
The MyoPS challenge dataset includes 45 paired three-
sequence CMR images (bSSFP, LGE, and T2 CMR) ac-
quired from the same patients, with 25 subjects publicly
available. Each subject contains 2–6 slices, with an in-plane
resolution ranging from 0.73 to 0.76 mm. The dataset pro-
vides gold-standard segmentations for the left ventricular
blood pool, right ventricular blood pool, left ventricular my-
ocardium, left ventricular myocardial scar, and edema. We
randomly split the dataset into training, validation, and test-
ing sets in a 60/20/20 ratio, resulting in 51 training images,
23 validation images, and 18 testing images. However, sim-
ilar to the LVQuant dataset, the limited number of training
examples makes it insufficient for developing a source seg-
mentation model. Consequently, we only retain the testing
set for adaptation experiments. For these experiments, we
extract the bSSFP sequence as the input image and compose
the ground truth myocardium by combining the myocardial
scar and edema labels with the normal myocardium.

A.4. M&M [3]
The M&M dataset is publicly available, comprising 360
cases collected from four vendors (Siemens, Philips, GE
Healthcare, and Canon), six centers, and three countries
(Spain, Canada, and Germany). The dataset builds upon
the labeling framework of the ACDC dataset [2], providing
ground truth annotations for the left ventricle, myocardium,
and right ventricle. The in-plane resolution ranges from
0.98 to 1.32 mm, and the longitudinal stack contains 10-
12 slices. Following a preprocessing pipeline similar to
ACDC, we extract the end-diastolic (ED) and end-systolic
(ES) frames from each sequence slice-by-slice along the
longitudinal stack. After resampling pixel spacings to
1mm→1mm, we center-crop the frames to 256→256 around
the myocardium mask in the ED frame. The dataset is ran-
domly divided into training, validation, and testing sets in a
60/20/20 ratio, resulting in 2918 training images, 964 vali-
dation images, and 987 testing images. To reduce computa-
tional costs, the testing set is subsampled to approximately
one-quarter of its size, yielding 246 samples.

A.5. GMSC [42]
The GMSC dataset is a multi-center, multi-vendor collec-
tion of spinal cord MRI anatomical images, comprising
healthy subjects from four sites: (1) Site 1 from Univer-
sity College London, acquired using a 3T Philips Achieva
T1-weighted MRI; (2) Site 2 from Polytechnique Montreal,
using a 3T Siemens TIM Trio with T1-weighted; (3) Site



3 from the University of Zurich, using a 3T Siemens Skyra
T2-weighted MRI; and (4) Site 4 from Vanderbilt Univer-
sity, acquired with a 3T whole-body Philips scanner for T2-
weighted. Each site contains 10 subjects, with manual an-
notations from four raters. Following [7], we preprocess the
data by center-cropping each slice to 144 → 144 after nor-
malizing image intensity to [0, 1] and randomly split it at the
subject level into training, validation, and testing sets using
a 60/20/20 ratio, resulting in 21/3/6 for Site 1, 76/13/24 for
Site 2, 125/18/36 for Site 3, and 95/12/26 for Site 4. This
structured distribution ensures balanced evaluation across
imaging centers and scanner variations.

A.6. CHN [21]

The Shenzhen (CHN) chest X-ray dataset, created by the
Third People’s Hospital of Shenzhen City and Guangdong
Medical College in collaboration with the Department of
Health and Human Services, is publicly available. It con-
sists of 566 chest X-ray images, including both normal
and abnormal cases with tuberculosis manifestations, ac-
companied by radiologist readings. We preprocess the im-
ages by resizing them to 128 → 128 and randomly splitting
the dataset into training, validation, and testing sets using
a 60/20/20 ratio, resulting in 339/113/114 images, respec-
tively.

A.7. MCU [21]

The Montgomery County dataset (MCU) is publicly avail-
able and was created through a collaboration between the
National Library of Medicine and the Montgomery County
Department of Health and Human Services. It comprises
138 chest X-ray images, including 80 normal cases and
58 with tuberculosis-related abnormalities. Following the
same preprocessing as CHN, we resize each image to 128→
128 and randomly split the dataset into training, validation,
and testing sets using a 60/20/20 ratio, yielding 82/28/28
images, respectively.

A.8. JSRT [46]

The Japanese Society of Radiological Technology (JSRT)
dataset is a publicly available collection of posteroanterior
chest X-ray (CXR) images, widely used for lung segmenta-
tion and nodule detection research. It comprises 199 images
for training and 40 for testing. Following standard protocols
from other lung segmentation datasets, we randomly split
the dataset into training, validation, and testing sets using
a 60/20/20 ratio, yielding 159/40/48 images, respectively.
Each image is resized to 128 → 128. This structured split
ensures a balanced evaluation across different dataset parti-
tions, facilitating robust model training and validation.

B. Implementation Details
B.1. Evaluation Metrics
Dice Score For a pair of predicted segmentation mask
Ŝ ↑ {0, 1}H→W and ground truth mask S ↑ {0, 1}H→W ,
the Dice score is defined to measure the ratio of overlap:

Dice(Ŝ, S) =
2|Ŝ ↓ S|
|Ŝ|+ |S|

. (9)

Here, |Ŝ ↓ S| denotes the number of overlapping elements
between the predicted mask Ŝ and the ground truth mask
S, while |Ŝ| and |S| represent the total number of elements
in the predicted mask and ground truth mask, respectively.
The Dice score quantifies the similarity between the pre-
dicted and ground truth masks, ranging from 0 to 1. A Dice
score of 1 indicates perfect overlap, while a score of 0 indi-
cates no overlap.

Average Surface Distance We compute the Average Sur-
face Distance (ASD) to measure the mean boundary devi-
ation between the predicted and ground truth segmentation
masks. Formally, ASD is defined as:

dASD(Ŝ, S) =
1

|ωŜ|+ |ωS|

(
∑

x↑ωŜ

min
y↑ωS

↔x↗ y↔ (10)

+
∑

y↑ωS

min
x↑ωŜ

↔y ↗ x↔
)
. (11)

Here, ωŜ and ωS represent the boundary points of the pre-
dicted segmentation and the ground truth segmentation, re-
spectively. The term ↔x↗y↔ denotes the Euclidean distance
between two points, while miny↑ωS ↔x ↗ y↔ computes the
shortest distance from a boundary point x ↑ ωŜ to the clos-
est point in ωS, ensuring an accurate local correspondence.
The final ASD value represents the mean of these shortest
distances, summing over both segmentations.

Hardware and Hyperparameters All our experiments
were implemented using PyTorch on NVIDIA A5000 GPUs
with 24 GB memory. We choose patch size as 1/16 of the
image size and use the mean absolute difference as the dis-
tance metric in Eq. (7) with ε = 50. We use Adam opti-
mizer [23] for Eq. (8) in the main paper.

B.2. Training Details
Source Segmentation Model All experiments are im-
plemented in Python using the PyTorch framework. We
train the segmentation models from scratch on the source



datasets ACDC and M&M for each architecture, utiliz-
ing a hybrid segmentation loss combining Dice and cross-
entropy. During training, we apply random data augmenta-
tion with a probability of 0.5, including random flipping,
translation, and rotation. The models are optimized us-
ing the Adam optimizer with a learning rate of 1 → 10↓4.
To align with the convention of adapting BatchNorm lay-
ers [55, 56, 63] in segmentation models, we replace Group-
Norm in MedNeXt and InstanceNorm in SwinUNETR with
BatchNorm. All segmentation models are trained with 150
epochs with a batch size of 8. We want to emphasize that
our test-time adaptation framework operates under the as-
sumption that the source segmentation model is pre-trained
and provided.

Shape Energy Model Our region-based shape energy
model is implemented as a simple convolutional neural net-
work (CNN), designed to capture the localized nature of
shape energy. The model comprises four convolutional lay-
ers, each with a kernel size of 5, stride of 2, and padding of
2. Each convolutional layer is followed by a LeakyReLU
activation function with a negative slope of 0.2, as well
as a BatchNorm layer for regularization and stability. Fi-
nally, the output is projected to a single channel using an
additional convolutional layer as logits. For spatial aug-
mentations, we introduce handcrafted spatial affine trans-
formation and pixel-wise noise with probability p across all
samples in the minibatch. Additionally, we apply patch-
wise dropout to create holes in the initially augmented
masks. These altered predictions are then added back to
the original masks for further augmentation. We use the
BCEWithLogitsLoss to exploit the logsumexp trick for
training numerical stability. We use one-hot encoding for
the ground truth mask and apply softmax activation for seg-
mentation prediction logits as inputs for the shape energy
model. We train our proposed region-based shape energy
model using the Adam optimizer with 150 epochs. We use
the cosine decay learning rate scheduler with a warm-up
stage including 1000 steps. During the adaptation stage, we
employ the Adam optimizer to update the collected Batch-
Norm parameters from the source segmentation model.

C. Additional Results
Quantitative Results We begin by presenting the quan-
titative evaluation of the source segmentation models, as
shown Tab. 8. All models demonstrate strong performance
in LV segmentation, achieving Dice scores above 90%,
and myocardium segmentation, with Dice scores exceeding
80%. Myocardium segmentation is inherently more chal-
lenging due to its complex structure, being a thin, crescent-
shaped layer surrounding the LV. Both MedNeXt and Swin-
UNETR achieve lower average surface distances compared

Architecture
ACDC M&M

LV Myo LV Myo

DSC ↘ ASD ≃ DSC ↘ ASD ≃ DSC ↘ ASD ≃ DSC ↘ ASD ≃
UNet 90.16 3.81 82.56 4.21 92.99 2.75 84.45 2.38
MedNeXt 90.06 1.63 80.62 1.64 94.00 1.13 84.29 1.25
SwinUNETR 91.95 1.36 84.39 1.38 94.41 1.19 85.25 1.24

Table 8. Quantitative results for the source segmentation models
(UNet, MedNeXt, and SwinUNETR) trained on the ACDC and
M&M datasets are presented. The evaluation metrics include the
DSC (%) and ASD (px).

Iterations (i) LV Myo

DSC ↘ ASD ≃ DSC ↘ ASD ≃
i = 1 64.85 16.26 51.20 13.81
i = 3 74.05 10.68 57.83 9.48
i = 5 73.94 11.60 58.66 10.42
i = 10 76.93 8.77 59.43 11.68

Table 9. Effect of the number of iterations of the proposed method
during test-time adaptation on the UNet architecture for the ACDC
→↑ LVQuant task. Evaluation metrics include the DSC (%) and
ASD (px), with the best-performing results highlighted in bold.

to the vanilla UNet, highlighting the advantages of their ad-
vanced architectures. MedNeXt benefits from its ConvNeXt
backbone, while SwinUNETR leverages transformer lay-
ers, both of which excel at capturing global context. This
enables them to handle fine details more effectively and
produce smoother, more accurate contours, particularly for
complex structures like the myocardium.

We further analyze the effect of the number of itera-
tions in the proposed method, as shown in Tab. 9. The
results indicate that the Dice score improves consistently
with an increasing number of iterations, with multiple it-
erations significantly outperforming a single update. This
improvement occurs because a single gradient-based update
represents only a linear step, which is insufficient to reach
the typically nonlinear local minima required for optimal
performance. We observe that the average surface distance
for the myocardium increases as the number of iterations
grows. This can be attributed to a limitation in our pro-
posed approach, which lacks explicit regularization of the
image during adaptation. Consequently, this may lead to
the generation of shapes in unintended regions, ultimately
contributing to the observed increase in the average surface
distance.

Qualitative Results We present additional qualitative re-
sults of our proposed approach in Fig. 6, demonstrating its
ability to effectively refine initial predictions and produce
more plausible shapes after adaptation. The refined shapes
are visually closer to the ground truth compared to other
baselines, showcasing the effectiveness of our method. To



Figure 6. Qualitative evaluation of our proposed approach using the UNet architecture compared to baseline methods. The top four rows
depict adapted cardiac segmentation, while the bottom four rows show lung segmentation from chest X-rays. Our approach effectively
refines incomplete initial segmentations, generating more anatomically plausible shapes after adaptation.

further evaluate the performance of our approach in scenar-
ios where imaging semantics are misaligned, we conduct an
additional analysis by training on the public 2D ultrasound

dataset CAMUS, which contains two-chamber views, and
adapting to the CardiacUDA Site G dataset, which consists
of four-chamber views. The qualitative results are shown



Figure 7. Qualitative evaluation of adaptation performance on source and target datasets with misaligned semantics is presented. Our
proposed approach is trained on a 2D ultrasound dataset from CAMUS and adapted to the CardiacUDA Site G dataset. In the top row, we
showcase a positive example where the initial prediction accurately identifies the right chambers. Conversely, the bottom row illustrates a
negative case where the initial prediction incorrectly identifies the chamber locations. These examples highlight the challenges of semantic
misalignment and the variability in adaptation outcomes.

Methods UNet MedNeXt SwinUNETR

TENT 0.18 (-21.74%) 0.19 (-82.24%) 0.18 (-48.57%)
CoTTA 1.76 (+665.22%) 3.47 (+224.30%) 1.99 (+468.57%)

TEA 0.25 (+8.7%) 4.15 (+287.85%) 0.63 (+80.00%)
Ours 0.23 1.07 0.35

Table 10. Inference time per sample (in seconds) measured on a
single NVIDIA RTX 2080 Ti GPU with 11 GB memory.

in Fig. 7. In the top row example, when the initial predic-
tion correctly identifies the chamber, our proposed approach
successfully removes outliers and generates more plausible
shapes compared to the baselines. However, in cases where
the initial prediction incorrectly identifies the chamber (bot-
tom row example), our approach fails to correct the mispre-
diction. We plan to address this limitation in future work
by introducing enhanced regularization on the image dur-
ing the adaptation process.

Computation Efficiency We evaluate the running time of
our proposed approach and compare it with existing meth-
ods in Tab. 10. Measured on a single GPU during infer-
ence, our approach achieves an average speedup of 4.5→
over CoTTA and 1.3→ over TEA, while remaining compa-
rable to TENT. This efficiency stems from our trained en-
ergy model, which requires only a forward pass, eliminating
the need for extensive augmentation averaging in CoTTA or
the stochastic gradient Langevin dynamics used to generate
synthetic samples in TEA.

Representativeness of Simulated Negative Examples
We further perform a t-SNE analysis (Fig. 8) of both image
and segmentation features, using ACDC as in-distribution
(ID) and others as OOD. Fig. 8 (left) shows a t-SNE plot of

features encoded by the pretrained source model on ACDC
(source) as in-distribution (ID) images, adversarially per-
turbed ACDC images (Adv.), and OOD images (real-world
testing sets with covariate shifts). Fig. 8 (right) shows the
t-SNE of energy model features of the segmentation pro-
duced by the pretrained model. Adversarially perturbed im-
ages and their resulting segmentations align with OOD im-
ages and their segmentations. This validates that indeed our
perturbations model real covariate shifts.

Figure 8. T-SNE analysis of both image (top) and segmentation
features (bottom).
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ω = 50† 73.6 77.7 95.3 95.1 56.2 87.2 80.9
ω = 75 73.0 79.1 95.1 94.7 52.6 87.3 80.3
ω = 100 71.6 75.7 95.1 94.6 52.5 86.7 79.4

Pe
rt.

M
ag

.

ε = 0.1 70.8 76.2 94.2 95.1 54.5 87.0 79.6
ε = 0.05† 73.6 77.7 95.3 95.1 56.2 87.2 80.9
ε = 0.01 73.3 73.1 93.6 94.8 53.5 86.4 79.1

Table 11. Hyperparameter sensitivity analysis on GMSC dataset,
with sites 1 and 4 as source. Reported metrics include DSC (%).

!ε 0 0.01 0.03 0.05 0.07

Pretrained 58.98 55.20 47.95 48.29 35.39
TENT 65.78 67.20 58.30 52.39 45.42
Ours 76.93 72.47 62.01 58.07 54.70

Table 12. Quantitative analysis under varying degrees of simulated
motion artifacts (!ω). Reported metric includes Dice (%).

Figure 9. Visualization of simulated motion artifacts (!ω).

Hyperparameter Sensitivity Our choice of hyperparam-
eters was determined empirically. We provide a sensitiv-
ity analysis in Tab. 11 of patch size, threshold ε , and per-
turbation magnitude ϑ on multiple adaptation scenarios on
GMSC dataset (sites 1-4). While our method is not too sen-
sitive to hyperparamters, our proposed choice achieves the
overall best performance.

Performance Analysis Under Varying degress of arti-
facts We present an analysis under varying realistic mo-
tion artifacts. We simulate motion blur following [64] by
applying FFT and introducing random phase shifts in k-
space (!ϖ ↑ [0, 0.07]), capturing mild to severe artifacts
as shown in Fig. 9. From Tab. 12, although performance
of all methods degrades gracefully with increasing artifact
severity, ours remains most robust.

More Comparisons We further discuss relevant works
and present quantitative comparisons across different con-
figurations. Unlike DeTTA [59], which is UNet-specific
and requires separate denoising pretraining, our method is
model-agnostic. Methods [24, 31, 50] operate under dif-
ferent settings. Post-DAE [24] is post-processing without
model adaptation, while MAS [50] and SFDA [31] rely on
multiple passes over unlabeled target data, violating TTA

† is proposed. 1 →↑ 2 1 →↑ 3 1 →↑ 4 4 →↑ 1 4 →↑ 2 4 →↑ 3 Avg.

C
om

pa
ris

on DeTTA [1] 66.7 70.3 91.9 91.3 55.2 87.1 77.1
Ours + Ls 73.1 77.5 95.4 95.2 54.4 87.6 80.5

Ours (multi) 74.2 74.8 94.4 94.3 54.0 88.7 80.1
Ours (single)† 73.6 77.7 95.3 95.1 56.2 87.2 80.9

Table 13. Quantitative comparisons of adapted predictions for
spinal cord MRI segmentation, with sites 1 and 4 in GMSC as
the source dataset. Reported metrics include DSC (%).

Figure 10. Convergence analysis under the same compute budget.

assumptions. Amongst which, DeTTA provided code, so
we compare with them in Tab. 13 where our method outper-
forms. We also evaluate effect of using multi-scale energy
functions. Tab. 13 shows comparison with single-scale and
multi-scale energy (scoring) function with output at spa-
tial scales 4→4, 9→9, 18→18, where multiscale performs
comparably. We assess the impact of adding a structure-
aware smoothness loss. Tab. 13 shows optimizing a (im-
age) structure-aware local smoothness loss (Ls) along with
binary cross entropy yields little difference. We hypothesize
that the small difference is due to the architectural inductive
bias from the convolutional feature pyramid, which captures
spatial and scale continuity.

Fairness in Compute Budget and Convergence Per
convention in prior works, there is an allowable time budget
for updates rather than a fixed number of updates. Fig. 10
shows that we outperform others under the same time bud-
get in ACDC ⇐⇒ LVQuant. An adaptive criterion stopping
after small energy changes halts at 9 steps, which results in
a minimal Dice change and still outperforms other methods.
There are diminished gains over longer runs.

Calibration Analysis We perform a calibration analysis
for our adapted left ventricle segmentation in ACDC ⇐⇒
LVQuant using UNet, which shows our approach is reason-
ably calibrated as shown in Fig. 11.

Applicability to 3D Volumes. Our method is viable for
real-time deployment. Average 3D MRI acquisition time is
⇑6 mins. We analyzed time complexity by exponentially
scaling batch size (1-8), recording runtimes of 0.16, 0.40,



Figure 11. Calibration analysis (ACDC→↑LVQuant, UNet).

1.81, 4.99 mins on 3D volumes of 128→128→128, confirm-
ing O(N) w.r.t. size N . Thus, our adaptation completes
before the next scan finishes acquisition.


