Quadratic Gaussian Splatting: High Quality Surface Reconstruction with
Second-order Geometric Primitives

Supplementary Material

In this supplementary material, we provide detailed ex-
planations of the following: (1) Comparison of quadric
(QGS) and disk (2DGS [4]). (2) Calculation of the pro-
jected bounding box of primitives. (3) Details of per-tile
and per-pixel sorting. (4) Solving the ray-primitive inter-
section equation and numerical handling. (5) Derivation of
the geodesic distance formula integration. (6) Derivation of
Gaussian curvature. (7) We present more qualitative results.

Comparison of Disk and Quadric

We visualize the primitives of QGS (Quadric) and 2DGS
(Disk), as shown in Fig 1. It can be observed that quadrics
tightly conform to the surface in a curved manner, with a
more noticeable fit in regions of high curvature.

Details of Bounding Box Calculation.

In 2DGS/3DGS [4, 6], Gaussian primitives are enclosed
convex representations, making it straightforward and con-
venient to compute their bounding box on the image, as
shown in the first column of Fig 2.

However, QGS includes concave cases, and geodesic
distance complicates analytical determination of the Gaus-
sian primitive’s rendered portion during preprocessing.
Specifically, the geodesic function Equation 10 in the main
text lacks an elementary inverse, so computing the equipo-
tential p(fy) = {I71(lo) : lo = o(o)}, requires numeri-
cal or approximate solutions. Moreover, even with an an-
alytical solution for p(6g) = (71 (c (o)), the Gaussian dis-
tribution in non-Euclidean space means equipotential lines
may not fully enclose the primitive, requiring extra bound-
ary calculations. A straightforward approach is to use the
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Figure 1. Visualizaion results on GSO dataset [3]. (a) shows
the ground truth mesh, (b) displays the disk primitives, and (c)
presents the quadric primitives.
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Figure 2. Comparison diagram of the bounding boxes between
loose and tight case.
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Figure 3. Comparison diagram of the approximate function versus
the geodesic function. The red line represents the approximate
function, while the black line represents the geodesic function.

projection of the quadric’s 3D bounding box as the 2D
bounding box, as shown in Fig 2 (a). Its eight vertices are
projected onto the image plane, and their 2D axis-aligned
bounding box (AABB) is used as the 2D bounding box, as
illustrated in Fig 2 (c). However, this loose case signifi-
cantly enlarges the 2D bounding box, leading to a decrease
in efficiency. To address this, we construct a tighter bound-
ing box using the quadric’s tangent planes, as shown in Fig
2 (b). Specifically, we first scale the geodesic function to a
quadratic polynomial function:
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Given the direction 0y, we obtain the variance of tl}e Gaus-
sian distribution (). The root of the equation I(a, p) —
oo = 0 in this direction can be calculated as:
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The comparison between the approximate function and the
geodesic distance function is shown in Fig 3, demonstrating
that the two functions nearly overlap.

Since the Equation 1 through the origin, we take its
positive root, representing the horizontal distance from the
primitive’s vertex at a geodesic distance of og(fp). We
compute this for the major and minor axes, i.e. § = 0
and § = /2, yielding p; and p2, and obtain four points:
(£p1,0, p?), (0, £p2, p3). We then compute the intersec-
tion of the tangent planes at these four points with the plane
z=0.
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At this stage, we obtain a 3D truncated pyramid with top
dimensions p; X pa, bottom dimensions x; X x4, and height



Mip-NeRF360 TNT
Storage FPS Training Time Storage FPS

2DGS 556MB 15.34 Th5min 218MB | 31.66
GOF 825MB 7.61 2h12min 367MB 13.45
QGS 688MB 7.92 1h48min 274MB 13.27

QGS w/ TB 641MB 14.15 1h13min 263MB 25.36

Table 1. Speed and storage comparison on the Mip-NeRF 360 [1]
and TNT [7] datasets. With a tighter bounding box, QGS achieves
a noticeable speed improvement.

max(p?, p3). We then project its eight vertices onto the im-
age plane and determine the minimum 2D bounding box
enclosing the resulting polygon as shown in Fig 2 (d).

By introducing a tighter bounding box and optimizing
global memory access on the GPU, QGS achieves twice the
speed. We denote the accelerated QGS as QGS w/ TB and
compare the storage and speed of different methods on the
Mip-NeRF 360 and TNT datasets as shown in Table 1.

Details of Per-tile Sorting and Per-pixel Resorting

2DGS [4] suggests the surface lies at the median in-
tersection point where opacity reaches 0.5. However, for
surface-based representations like 2DGS and QGS, the
Gaussian distribution is concentrated on the surface, mak-
ing the alpha-blending order more sensitive.

To address this, we introduce StopThePop’s per-tile sort-
ing and per-pixel resorting [8] for more precise ordering.
Specifically, for each 16 x 16 pixel tile, we compute the in-
tersection depth using the ray from the pixel closest to the
projected vertex of the quadric surface and apply this depth
to all 256 pixels for tile-based global sorting. As shown
in Fig 7 in the main text, this method effectively removes
streak-like inconsistencies but introduces minor blocky ar-
tifacts due to approximating with a single ray per tile. Then
we adopt StopThePop’s per-pixel local resorting to reorder
the Gaussians along each ray, to eliminate blocky incon-
sistencies. Specifically, after calculating each Gaussian’s
depth, normal, and other properties, we do not use them for
alpha-blending immediately. Instead, we store them in an 8-
length buffer array, and once the buffer is full, we select the
closest Gaussian for alpha-blending. In original 3DGS, for-
ward and backward computations use different traversal or-
ders, causing the buffering mechanism to produce inconsis-
tent rendering. Thus, following StopThePop’s strategy, we
perform gradient computation in a near-to-far order, which
requires modifying the original gradient formulas. For vol-
umetric rendering maps, we can uniformly express them as:
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Where X, represents properties such as the color, depth,
normal, or curvature of the primitives. The gradient com-
putation in a back-to-front order is given as follows:
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‘We rewrite it as front-to-back form:
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Ensuring that the backward computation follows the same
order as the forward computation. Fortunately, the gradient
computation order does not affect the distortion loss, mean-
ing no additional derivation is needed for the distortion loss.
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Figure 4. [llustration of approximate intersections. The blue thick
line represents the depth of the approximate intersection.

Details of Ray-splat Intersection

Given the camera center 6 = [6!, 6%, 6°]7 and ray direc-
tion # = [#1,72,73]7 in the Gaussian coordinate system,

the ray can be expressed as:
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Here, t denotes the depth. By solving the ray equation
4 together with the quadric surface equation 7 in the main
text, we find two intersection points:
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However, Equation 5 encounters numerical issues when
|A| is very small, particularly during backpropagation, as a
small denominator can cause floating-point overflow, result-
ing in invalid values such as NaN or Inf. Upon examination,
we observe that when A is especially small, it corresponds
to cases where the quadric surface is nearly flat or when the
ray is almost perpendicular to the s; X s plane. In such



cases, we can ignore the quadratic term, reducing Equation
StoBt+C =0,ort = _E Geometrically, this solution
represents the depth of the intersection between the ray and
the tangent plane determined by the point where the per-
pendicular line from the camera center meets the quadric
surface, as indicated by the thick blue line n in Fig 4.

Let M = s; X s5 be the horizontal plane in the Gaussian
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local coordinate system. Let p, = [01,02,53(5% + %)]”
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represent the intersection of the perpendicular line from the
camera center to M and the quadric surface. The normal
of the tangent plane N at the intersection point can be ex-
pressed as:
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The projection of (p, — 6) onto the normal direction n is:
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As indicated by the thick red line segment in the Fig 4. On
the other hand, the cosine of the angle between the normal
vector and the viewing direction can be expressed as:
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Noting that ||¢|| = 1, the length of the line from the camera
center along the viewing direction to the intersection with
the tangent plane is given by:

It is evident that when the surface is nearly flat or the view-
ing direction is almost perpendicular to the horizontal plane,
the approximate solution nearly coincides with the exact so-
lution. Therefore, for cases where |A| < le — 6, we approx-
imate the solution using the method described above.

Derivation of Geodesic Arc Length

For the geodesic arc length formula:

(a, po) / V14 (2at)?dt (©6)

Let u = 2at,x = arctan(u), then Equation 6 becomes:
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Equation 7 can be solved using integration by parts:
/secg(x)dm = tan(z) sec(z) — /secg(x)da:
+ / sec(x)dx

Using [ sec(z)dx = In|sec(x) + tan(x)| + C, we have:
/sec3(x)dz - tan(z) sec(x) + 1112\ sec(z) + tan(z)|
= (Uer In(u + 1+ u2))/2
uvV/1 +u? + In(u + m)
= l(a7 po) —
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Details of Curvature

Here, we compute the Gaussian curvature analytically
using a standard differential geometry approach [9]. Given
the intersection point Py = [#0, 9o, 20| , we simplify Equa-
tion 7 as 2 = A1 22+ \29?. The partial derivatives at p are:

Ly = (1,0,2/\132‘0), Ty = (0, 1,2/\23}0)
The first fundamental form is:
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The second fundamental form is:
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Finally, the Gaussian curvature can be computed as:
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Addtional Results. In this section, we present addi-
tional qualitative results of QGS in both indoor and outdoor
scenarios. Figure 5 presents a comparison of QGS with
2DGS [4], GOF [10], and PGSR [2] on the DTU dataset,
illustrating that QGS captures more geometric details. QGS
also achieves accurate reconstructions in indoor and out-
door scenes, as shown in Fig 6 with results from the TNT
and Mip-NeRF 360 datasets. Rendering results for all three
datasets are shown in Fig 7. Finally, we qualitatively tested
our method on an urban scene captured from aerial view.
As shown in Fig 8, QGS captures more building details than
2DGS [4] in aerial views.
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Figure 5. Qualitative geometric reconstruction comparisons on the DTU dataset [5]. Our method achieves reconstructions of higher quality
and greater detail.

Stump Garden Counter

Figure 6. Qualitative geometry results for the Tanks and Temples dataset [7] and Mip-NeRF 360 dataset [1].



Figure 8. Qualitative geometry result for the urban scene captured from aerial view, involving over 1,000 images. In the subfigure, the left
shows the results of 2DGS [4], while the right shows the results of QGS.
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