
Appendix

A. Training Procedures
A.1. Implementation Details
For CLIP [43], we use the official implementation released by OpenAI1. And for ALIP [58], we also use the official im-
plementation released by the paper authors2. As the proposed RANKCLIP essentially shares the same model architecture
(separate vision, text encoders, projection layer, and a classification head) as CLIP, we build upon the CLIP code repository
for our model construction3. We set the scaling parameters for cross-modal (ωc) and in-modal (ωi) ranking consistency to
1/16 and 1/16 respectively throughout all the experiments unless otherwise noted. All CLIP, ALIP and RANKCLIP models
are initialized from scratch without loading any existing weights. And the embedding sizes for both modalities all project to
1024 across the three models.

A.2. Training Parameters
Following CLIP [43], we adopt the ResNet-50 [21] and transformer architectures [13] for image and text encoding, respec-
tively. Training is conducted from scratch over 64 epochs using a single NVIDIA A100 GPU, with a batch size of 512, an
initial learning rate of 0.0005 employing cosine scheduling, and 10,000 warm-up steps.

A.3. Training Time Consumption
we conducted the experiments using the same hardware specifications. The table below shows the time consumption for
training our RankCLIP and CLIP models with 50K samples from CC3M using a single NVIDIA A100 GPU.

Time consumption Dataset size epochs batch size model name
CLIP 1d 2h 54m 48s 50K 64 512 RN50

RANKCLIP 1d 1h 4m 23s 50K 64 512 RN50

Table 6. Training Details

As shown in the table, the difference in time consumption is negligible. Interestingly, our method is slightly faster than
CLIP, but we think it may be attributed to hardware optimizations or variance.

B. CLIP Preliminaries
CLIP [43] has been a prominent method for learning detailed multimodal representations through the alignment of images
and texts. Given a set D = {(Vj , Tj)}Nj=1 of N image-text pairs, where Vj denotes an image and Tj is the corresponding
text, the goal is to learn representations that map semantically similar images and texts closer in the embedding space, while
dissimilar pairs are distanced apart. More specifically, the foundational CLIP model employs two encoders: an image encoder
fI : I → Rm that processes raw images into visual embeddings and a text encoder fT : T → Rn which encodes textual
data into text embeddings. Then both the text and visual features are projected to a latent space with identical dimension.
Formally, the embeddings for a text-image pair (Vj , Tj) are denoted as vk = fI(Vj) and tj = fT (Tj), respectively. The
embeddings are then normalized to lie on an unit hypersphere by enforcing l2-norm constraint:

v̂j =
vj

↑vj↑2
, t̂j =

tj
↑tj↑2

. (11)

so that the magnitude information is erased and only direction is preserved.
To align the image and text representations, a contrastive loss function, typically a variant of the InfoNCE loss [39], which

optimizes the similarity of the matched pair against unmatched pairs, is utilized, i.e.:

LCLIP = ↓ 1

2N

N∑

j=1

[
log

exp(v̂→j t̂j/ε)∑N
k=1 exp(v̂

→
j t̂k/ε)︸ ︷︷ ︸

1

+ log
exp(t̂→j v̂j/ε)∑N
k=1 exp(t̂

→
j v̂k/ε)︸ ︷︷ ︸

2

]
(12)

1CLIP repository on GitHub: https://github.com/openai/CLIP.
2ALIP repository on GitHub: https://github.com/deepglint/ALIP.
3RANKCLIP repository will be released upon acceptance.



where the first term 1 contrasts images with the texts, the second term 2 contrasts texts with the images, and ε denotes
a temperature scaling parameter that adjusts the concentration of the distribution. The optimization of Eqn. (12) results in
embeddings where the cosine similarity between matched image-text pairs is maximized in comparison to unmatched pairs,
thus achieving the desired alignment in the joint embedding space.

Despite the efficacy of CLIP in learning correlated multimodal embeddings, it inherently relies on strict pairwise matched
comparisons and fails to capture the more complex, fine-grained nature of semantic similarity within and across modalities
that are generally treated as unmatched. This observation motivates the development of RANKCLIP, which innovates beyond
binary pairwise contrasts to consider holistic listwise consistency within and across modalities.

B.1. Additional Experiments
We conduct the linear probing experiment under different training datasize from 3m to 15m and different ablated settings as
shown in Table 7 and 8.

Data
Size Method Model

Type CI
FA

R-
10

CI
FA

R-
10

0

D
TD

FG
V

G
A

irc
ra

ft

Fo
od

10
1

G
TS

RB

O
xf

or
dP

et
s

SS
T2

ST
L1

0

SV
H

N

CLIP RN50 80.12% 58.50% 57.18% 39.75% 59.14% 72.41% 61.73% 54.48% 86.01% 58.92%
3m RANKCLIP RN50 78.29% 56.24% 57.82% 39.30% 58.63% 74.13% 64.35% 55.02% 86.69% 60.68%

CLIP ViT-B/32 77.60% 56.15% 43.19% 22.59% 39.72% 62.05% 40.39% 50.96% 78.99% 50.53%
RANKCLIP ViT-B/32 78.42% 56.64% 42.39% 23.43% 40.19% 60.63% 40.56% 53.32% 79.60% 47.72%

CLIP RN50 78.81% 56.32% 61.49% 25.83% 61.64% 68.76% 60.37% 55.57% 89.82% 47.99%
15m RANKCLIP RN50 83.27% 62.96% 65.96% 32.19% 68.11% 74.25% 67.40% 56.34% 94.20% 53.06%

CLIP ViT-B/32 82.97% 62.55% 49.47% 24.48% 52.46% 63.55% 50.78% 52.66% 87.14% 46.38%
RANKCLIP ViT-B/32 82.79% 59.89% 52.50% 23.94% 56.44% 61.58% 52.98% 53.60% 89.01% 42.16%

Table 7. Linear probing accuracy on 10 downstream datasets.

CIF
AR-1

0

CIF
AR-1

00

DTD Airc
ra

ft

Fo
od

10
1

GTS
RB

Oxf
or

dP
ets

ST
L1

0

SS
T2

SV
HN

CLIP 77.6% 56.2% 43.2% 22.6% 39.7% 60.0% 40.4% 79.0% 51.0% 50.5%
RANKCLIPC 78.0% 55.4% 42.6% 21.1% 40.1% 60.5% 40.8% 78.8% 52.6% 48.0%
RANKCLIPI 77.3% 56.4% 39.2% 18.3% 37.4% 57.3% 36.3% 76.4% 51.1% 48.8%
RANKCLIP 78.4% 56.6% 42.4% 23.4% 40.2% 60.6% 40.6% 79.6% 53.4% 48.7%

Table 8. Linear probing accuracy on downstream datasets. RANKCLIPC and RANKCLIPI denote models trained with only Cross-modal
loss and In-modal loss, respectively. Bold highlights the best result, while underline marks the second-best.



B.2. Pseudo-code

Algorithm 1 Pseudo-code of RANKCLIP loss in a Python-like style.

# emb_pred: predictions from the model, shape [embs_length, embs_length]
# emb_true: ground truth labels, shape [embs_length, embs_length]

def rank_loss(emb_pred, emb_true):
# Shuffle for randomised tie resolution
emb_pred_shuff = emb_pred[:, random_indices]
emb_true_shuff = emb_true[:, random_indices]
# Record the rank label index
emb_true_sorted, indices = emb_true_shuff.sort(descending=True, dim=-1)
# Ranking the pred embedding by the true indices
preds_sorted = gather(emb_pred_shuff, dim=1, index=indices)
# Implementation of the Eq.1, Eq.2 and Eq.3
max_pred_values, _ = preds_sorted.max(dim=1, keepdim=True)
preds_sorted_minus_max = preds_sorted - max_pred_values
cumsums = cumsum(preds_sorted_minus_max.exp().flip(dims=[1]), dim=1).flip(dims=[1])
loss = (log(cumsums) - preds_sorted_minus_max) * scale_factor
return mean(sum(loss, dim=1))

# Cross-modal embeddings
logits_text_per_image=image_embeds @ text_embeds.T
logits_iamge_per_text=logits_text_per_image.T
# In-modal embeddings
logits_image_per_image=image_embeds @ image_embeds.T
logits_text_per_text=text_embeds @ text_embeds.T
# Compute the cross-modal rank loss
Cross_modal_loss=rank_loss(logits_text_per_image,logits_image_per_text)+rank_loss(logits_image_per_text

, logits_text_per_image)
# Compute the in-modal rank loss
In_modal_loss=rank_loss(logits_image_per_image,logits_text_per_text)+rank_loss(logits_text_per_text,

logits_image_per_image)
# Rank loss
Rank_loss=Contrastive_loss+Cross_modal_loss+In_modal_loss


	Introduction
	Related Work
	RankCLIP
	Ranking Model Formulation
	Cross-modal Consistency Ranking
	In-modal Consistency Ranking
	RankCLIP Loss
	Training Recipe on Selecting 1 and 2

	Experiments
	Experimental Setup
	Zero-shot Classification
	Zero-shot Cross-modal Retrieval
	Robustness to Distribution Shifts
	Linear Probing

	Ablation Studies
	Different Weights of RankCLIP Loss
	Different Data Sizes
	Different Backbones: RN50 vs. ViT

	Analysis
	Modality Gap
	Alignment and Uniformity
	Qualitative Examples

	Conclusion
	Training Procedures
	Implementation Details
	Training Parameters
	Training Time Consumption

	CLIP Preliminaries
	Additional Experiments
	Pseudo-code


