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1. Additional Video Examples

Due to the space limit in the main paper, we provide ad-
ditional video examples to validate our method and please
check our project website for all the results displayed in a
web UL

2. Implementation Detail

2.1. Dataset

For video embedder training, the dataset is composed of 15
million videos and 300 million images. For text-to-video
generation, we keep the same image resources and leverage
1 million videos to construct the dataset. The images are at
the resolution of 256 x with various aspect ratios, while all
videos are at the resolution of 192 x320.

2.2. Training

2.2.1. MAGVIT-v2

We reimplement MAGVIT-v2 [15] at the temporal com-
pression ratio of 4x, 8x, 16x, 32x, and train the mod-
els at the resolution of 128 x128 on our dataset with over
200K iterations. For 4x temporal compression rate, we
adopt the original 4-stage design and encode 17 frames into
5 latent frames at each chunk. For higher compression rate
experiments, we add an additional stage to both encoder
and decoder, and encode 17 frames into 3, 2 latent frames
for temporal compression rate 8x, 16X, respectively. As
for the extreme 32x temporal compression rate, every 33
frames will be encoded into 2 latent frames. We train both
MAGVIT-v2 and its discriminator with the AdamW [6] op-
timizer and we feed mixed images and videos to the network
based on the pre-defined ratios (Image: 20%, Video: 80%).
All models are trained with 32 A100 GPUs and each GPU
holds either 6 image inputs or 2 video sequences.

2.2.2. REGEN

Our method is trained at the temporal compression ratio
of 4x, 8x, 16x, 32x on our dataset with over 100K it-
erations. We train our method under the setting of recon-
struction, interpolation and extrapolation, and each scenario
will be randomly sampled at every iteration based on pre-
defined probabilities. Specifically, we tend more towards
reconstruction in the early training stage, and progressively
increase the probabilities of interpolation and extrapolation
with more training iterations. Our spatiotemporal video en-
coder adopts the same architectural design as our imple-
mented MAGVIT-v2 but encodes each chunk into 2 latent
frames with varying compression rates. We train the spa-
tiotemporal video encoder and the generative decoder in
an end-to-end fashion with the AdamW optimizer. Similar
with MAGVIT-v2 training, the model will be trained with
mixed images and videos based on the pre-defined ratios
(Image: 20%, Video: 80%). All models are trained using 32
A100 GPUs, but we leverage larger batch sizes compared to
MAGVIT-v2 as we did not utilize 3D convolution layers in
the decoder and the GPU can process more samples. The
image batch size is set to be 28 for all experiments and the
video batch size is 6, 4, 3, 1 for temporal compression ratio
of 4%, 8%, 16x, 32x, respectively.

2.3. Architecture Details

We illustrate the architecture detail of our method at 4x
temporal compression rate in Fig.1. The spatiotemporal
video encoder consists of four stages and it will encode ev-
ery 5 raw frames into 2 latent frames with the spatial com-
pression rate of 8x. The base channels are 128 and the
channel multiplier for different stages is 1, 2, 4, 6, respec-
tively. The generative decoder comprises 24 diffusion trans-
former blocks and takes the output of encoder as the condi-
tioning signal. For higher compression rate experiments,
we add an additional stage to the encoder while keeping
the same number of diffusion transformer blocks in the de-
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Figure 1.

Architecture details of our method at 4x temporal compression rate. T-causal Conv stands for temporal causal convolu-

tion where stride = 1 x 1 x 1. Downsample T-causal Conv stands for temporal causal convolution where stride will be selected from
{1x1x1,1x2x2,2x1x1,2x2x 2}, depending on the target compression ratios. The spatiotemporal video encoder is com-
posed of 4 stages and the generative decoder is made up of 24 diffusion transformer blocks.
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Figure 2. Alleviating the chunking issue with latent extension. The x-t slice is obtained by extracting a short segment (shown as the red

line in the video frame) from 2 chunk frames.

coder. The channel multiplier is adjusted to 1, 2, 4, 6, 6,
accordingly.

2.4. Alleviating Chunking Issue with Latent Exten-
sion

Following the idea of SDEdit [8], we utilize the last frame
prediction from the previous chunk to guide the generation
of the next chunk in an auto-regressive manner. Specifi-
cally, given a set of latent frames, we decode the first chunk

in the reconstruction setting and preserve the intermediate
results of the last frame at each sampling step. When de-
coding later chunks, we extend the latent by extrapolation
and control the decoder to generate 7, 4+ 1 frames with the
time shift of -1, where T, represents the length of each
chunk. In this manner, we can ensure there is one over-
lapped frame between consecutive chunks. During the gen-
eration of later chunks, we leverage the intermediate results
of the last frame from the previous chunk, which is also
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(a) PSNR comparisons with state-of-the-art video embedders on MCL-JCV
dataset under 256 256 inputs.
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(c) PSNR comparisons with state-of-the-art video embedders on DAVIS
2019 dataset under 256 X 256 inputs.
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(b) rFVD comparisons with state-of-the-art video embedders on MCL-JCV
dataset under 256 x 256 inputs.
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(d) rFVD comparisons with state-of-the-art video embedders on DAVIS
2019 dataset under 256 X256 inputs.

Figure 3. Holistic comparison with state-of-the-art video embedders with different latent channel dimensions. The compression factor is

_ CXHXWx(T-1)
calculated by'f’ = T exhxwxt

factors on different datasets.

the first frame of the current chunk, to guide the generation
of the current chunk so that we could mitigate the jumping
issue in an auto-regressive way. We provide an additional
example in Fig. 2 to demonstrate the effect.

3. Additional Comparisons with SOTA Video
Embedders

Existing video embedders have different latent channel di-
mensions. Some video embedders, like Open-SORA (OS)
[18] and Open-SORA-Plan (OSP) [4] only have 4 latent
channels, while video embedders like CogVideoX [14],
HunyuanVideo [3], Wan [12] have 16 latent channels.

For fairness of comparison, we compare against these
SOTA embedders by calculating the compression factor fol-
lowing LTX-Video [2]: r = %:(XT;D Shown in
Fig. 3, we further compare REGEN with Cosmos-Tokenizer
[1], LTX-Video [2], OmniTokenizer [13], Open-SORA
(OS) [18], Open-SORA-Plan (OSP) [4], WF-VAE [5], Vid-

. REGEN obtains better PSNR and rFVD compared to existing video embedders at various compression

Tok [11] and CV-VAE [17]. One can observe that our
method exhibits better performance at various compression
factors on both metrics and datasets.

To compare with video embedders which use 16-channel
latents and have a smaller compression factor, we train a 16-
channel variant of REGEN and the results can be found in
Tab. 1: our method outperforms other SOTA video embed-
ders on all metrics and datasets, demonstrating the effec-
tiveness of our generative decoder and the soundness of our
experimental setup.

4. Class-Conditional Video Generation

Following prior work Lattle [7], we perform -class-
conditional video generation on public benchmark UCF101
[10]. We train the Latte-L/2 model with MAGVIT-v2 and
REGEN as the video embedder on the ultra-compact latent
with 32x temporal compression. Both models are trained
with 33 input frames at the resolution of 256x256 under



MCL-JCV DAVIS 2019
PSNR SSIM rFVD| PSNR SSIM rFVD|

Method

CV-VAE-SD3  33.15 0.861 22.62 30.23 0.803 4021
CogVideoX 33.68 0870 19.26 3042 0.810 41.15
HunyuanVideo 34.07 0.876 14.13 31.19 0.824 2795
Wan-2.1 33.50 0.867 19.85 3045 0.809 35.32
REGEN 3555 0.898 1034 3293 0.860 23.34

Table 1. Reconstruction comparison at base 4 x temporal com-
pression. We compare REGEN with various SOTA 16-channel
video embedders at 4 x temporal compression on MCL-JCV and
DAVIS 2019 datasets under 512x512 inputs. The best results are
bold-faced and the second best results are underlined.

the same resources for fair comparison. Tab. 2 shows that
our method outperforms MAGVIT-v2 in FVD which vali-
dates that our strength in reconstruction can be translated
into video generation.

Metric Compression  Resolution MAGVIT-v2 REGEN
FVDs3l 8x8x32 256%256 708.36 448.64

Table 2. Quantitative evaluation of MAGVIT-v2 and REGEN
for class-conditional video generation on UCF101 dataset under
256x256 inputs. The best results are bold-faced.

5. Efficiency Analysis of REGEN

For the training efficiency of latent generative models, we
have the same efficiency with MAGVIT-v2 [15] as we lever-
age the same encoder with it and decoders will not affect the
training of latent generative models.

Although operating on the noise input, REGEN is
equipped with a large patch size to accommodate the costs
and ensure efficient inference. Since REGEN supports one-
step sampling, we measure the running time (milliseconds)
of REGEN on one A100 GPU with one-step decoding and
compare with MAGVIT-v2 at various compression rates un-
der 256x256 inputs. One can observe from Tab. 3 that
REGEN costs similar or fewer running times except at the
compression rate of 8x8x32. The reason is that we have
to adjust the location of upsampling layers in MAGVIT-v2
decoder at 8 x8x32 and shift all upsampling layers towards
the end blocks to avoid out of GPU memory during training
due to the causal 3D convolutional layers, even on 80GB
A100s. Note that we avoid doing this for other compression
ratios of MAGVIT-v2 as it is not an optimal design and low-
ers reconstruction quality, as also mentioned in MAGVIT-
v2 work [15]. For 32x temporal compression variant, this
design choice is unavoidable to ensure the decoding process
fits within the available GPU memory. Consequently, the
computational complexity of this model is lower than that
of the ideal design. Even so, this version of 32x MAGVIT-
v2 cannot decode videos of even 512x512 resolution which

highlights the scalability of our transformer-based decoder.

Latency (ms)

Method

8x8x4 8Bx8x8 8x8x16 8x8x32
MAGVIT-v2 88 317 343 153*
REGEN 89 159 295 548

Table 3. Comparison of decoder latency at various compression
rates on one A100 GPU under 256x256 inputs. *MAGVIT-v2
32x has small latency because we have a different decoder design
where we move all upsampling blocks toward the end layers. This
is not optimal from the perspective of reconstruction quality for
the decoder, but this design is unavoidable otherwise the model
gives Out Of GPU Memory on 80GB A100 GPUs.

6. Effectiveness of Scaling Convolution-Based
Video Embedders

While we have shown that REGEN exhibits significant ad-
vantage over MAGVIT-v2 at high temporal compression
rates, e.g., 16 x and 32 x, we further scale up the MAGVIT-
v2 decoder to explore whether larger model size could help
to mitigate the performance gap. Specifically, we scale up
the MAGVIT-v2 decoder through the width dimension un-
til it matches the parameter of REGEN or reaches the GPU
memory. Tab. 4 shows that simply scaling up the model
size do not always translate to better results at high com-
pression rates, e.g., the expanded MAGVIT-v2 has worse
SSIM and rFVD compared to the original version at 16X
compression. Although scaling up model size has shown
some improvement at 32x compression, it still lags behind
REGEN obviously, suggesting that the idea of using gen-
erative decoders to escape the compression-reconstruction
trade-off is effective.

8x8x16 8x8x32
Method
PSNR SSIM rFVD| PSNR SSIM rFVD]
MAGVIT-v2 20.62 0.527 44124 1823 0.419 1080.15
MAGVIT-v2$ 20.83 0.508 486.48 18.98 0.437 1020.80
REGEN 23.85 0.635 328.83 2220 0.575 488.89

Table 4. Comparisons of expanded MAGVIT-v2 with REGEN
on DAVIS 2019 dataset under 256x256 inputs. We expand the
MAGVIT-v2 decoder by scaling up the width dimension and ¢
denotes the expanded version. The best results are bold-faced.

7. Latent Interpolation and Extrapolation

As described in the Method, our INR-based latent condi-
tioning module not only supports reconstruction, but can
generalize to interpolation and extrapolation as well with a
uniform design. To examine the interpolation ability of our
method, we compare it with two baselines: (1) Frame Av-
eraging: it averages the ground truth to get the interpolated



frames; (2) Ours + External Interpolation: it applies off-the-
shelf interpolation model [16] on our reconstructed frames.
Fig. 4 shows that simply averaging the frames results in
clear artifacts on the interpolated frames, while the results
of our model and EMA display a smoother transition and
align well with the ground truth. Apart from interpolation,
our design supports extrapolation as well, where the model
is going to predict the previous or future frames based on
the given input. Shown in Fig. 5, our approach forecasts fu-
ture motion based on prior frame sequences and the results
demonstrate strong alignment with the ground truth, which
highlights the generation ability of our decoder. Note that
our method is able to predict the past frames as well which
is shown in Fig. 6, promising the application of our method
for chunk-free generation to mitigate the jumping issue.

8. Relation to Stable Cascade and LTX-Video

Stable Cascade [9] performs in the latent domain which re-
quires an additional decoder for decoding, while REGEN
leverages a DiT decoder operating in the pixel space and
targets learning temporally compact latent space in videos.
While sharing the goal of generating details from a compact
latent, LTX-Video [2] is a noise-conditioned decoder (re-
taining the traditional latent-to-video mapping) rather than
a full diffusion model, and could only be applied at the last
denoising step in inference. Our decoder is a standard dif-
fusion model which starts from pure noise during inference.
Moreover, LTX-Video relies on a 128-dim latent for quality
whereas we restrict to only 8 channels.
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Figure 4. 2 interpolation results. Given input frames with purple bounding boxes, the model is asked to conduct interpolation to predict
the frame with blue bounding box and we compare our method with frame averaging and external interpolation model.
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Figure 5. Forward latent extrapolation results. Given input frames with purple bounding boxes, the model is asked to conduct extrapolation
to predict the future frame with blue bounding box.
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Figure 6. Backward latent extrapolation results. Given input frames with purple bounding boxes, the model is asked to conduct extrapola-
tion to predict the past frame with blue bounding box.
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