
SegAnyPET: Universal Promptable Segmentation from Positron Emission
Tomography Images

Supplementary Material

A. Dataset Information
In this work, our experiments are conducted on one private
dataset (PETS-5k) and one public dataset (AutoPET) con-
sisting of 3D whole-body 18F-fluorodeoxyglucose positron
emission tomography (18F-FDG-PET) images, which is the
most widely used PET tracer in oncology. As a non-specific
tracer, 18F-FDG can be used for whole-body imaging to re-
flect tissue glucose metabolism, which makes the imaging
useful in assessing the systemic distribution and metasta-
sis of tumors. Organ segmentation from 18F-FDG-PET im-
ages can be used to evaluate differences in the maximum
standardized uptake values (SUVmax) of different organs,
thereby assisting in the diagnosis of malignant tumors.

A.1. PETS-5k Dataset
The proposed PETS-5k dataset consists of 5,731 three-
dimensional whole-body 18F-FDG PET images collected
from one local medical center. Patients were fasted for at
least 6h and had a blood glucose level < 200 mg/dL before
the PET/CT examination. PET/CT imaging was performed
at a median uptake time of 67 min (range from 53 to 81 min)
after intra-venous injection of 18F-FDG (3.7 MBq/kg). All
data were acquired on PET/CT scanners (Siemens Biograph
mCT) with 5 min per bed position. A low-dose CT scan
(120 kVp; 40–100 mAs; 5 mm slice thickness) was per-
formed from the upper thigh to the skull base, followed by
a PET scan with 3D Flowmotion acquisition mode. PET im-
ages were reconstructed with 4.07 × 4.07 × 3 mm3 voxels
using CT-based attenuation correction by Siemens-specific
TrueX algorithm.

A.2. AutoPET Dataset
The public AutoPET dataset consists of 1,014 three-
dimensional whole-body 18F-FDG PET images. All data
were acquired using cutting-edge PET/CT scanners, includ-
ing the Siemens Biograph mCT, mCT Flow, and Biograph
64, as well as the GE Discovery 690. These scans were con-
ducted following standardized protocols in alignment with
international guidelines. The dataset encompasses whole-
body examinations, typically ranging from the skull base to
the mid-thigh level. More details can be found in the origi-
nal paper [1].

A.3. Organ Selection and Annotation
Due to the characteristics of molecular imaging, some target
anatomical structures in segmentation tasks structural im-
ages like CT and MRI may not be apparent in PET images.

Figure 1. An overview of the annotation workflow of PETS-5k.

As a result, we select out five most clinical-important target
organs for training, including liver, left kidney, right kidney,
heart, and spleen. To evaluate the model performance on
training invisible organs, we further annotate seven organs
in the internal test set including aorta, prostate, left lung
lower lobe, right lung lower lobe, left lung upper lobe, right
lung upper lobe, and right lung middle lobe. These addi-
tional organs are not used for model training and only used
as test set to evaluate of the generalization performance of
SegAnyPET for universal segmentation of unseen targets.

For PETS-5k dataset, all the images are preliminary an-
notated by developed state-of-the-art segmentation model
and one junior annotator using LIFEx v7.6.0 [5]. Among
the dataset, 100 cases are then checked and refined by two
senior experts, which serve as the HQ training set and test
set, while the remaining cases serve as the LQ set in our
task. For AutoPET dataset, the original task is only focused
on tumor lesion segmentation. In addition to the original
tumor annotation, we select out and annotate a small sub-
set of 100 cases to annotate all the 12 target organs, named
AutoPET-Organ. The AutoPET-Organ is used as an exter-
nal test set to evaluate the generalization performance of
SegAnyPET on training invisible dataset.

A.4. Summary and Visualization
The information summary and visualization of datasets
used in our work are shown in Tab. 1 and Fig. 2.

B. Methodological Details
B.1. SegAnyPET Architecture
The detailed architecture of SegAnyPET is shown in Fig. 3.
Following the design in [6], for the image encoder, the in-
put patch size is set to 16×16×16 with a patch embed-
ding dimension of 768, paired with a learnable 3D abso-
lute positional encoding. Then the embeddings of patches
are input to 3D self-attention blocks. The depth of self-
attention blocks is set to 16. Within the prompt encoder,
sparse prompts are leverage by 3D position embedding to
represent 3D spatial differences, while dense prompts are



Dataset Split Annotation Targets Scans New Data New Label

Train LQ 5 target organs 5,631 ✓ ✓

PETS-5k Train HQ 5 target organs 40 ✓ ✓

Internal Test all 12 organs 60 ✓ ✓

AutoPET External Test tumor lesion 1,014

AutoPET-Organ External Test all 12 organs 100 ✓

Table 1. Information summary of datasets involved in the construction and evaluation of SegAnyPET.

Figure 2. Visualization of PET images and corresponding organ annotations of PETS-5k dataset and AutoPET-Organ dataset.



Figure 3. The detailed architecture of the network components of SegAnyPET.

handled with 3D convolutions followed by layer normaliza-
tion and GELU activation. The mask decoder is integrated
with 3D upscaling procedures, employing 3D transformer
blocks and 3D transposed convolutions to get the final seg-
mentation result.

B.2. Implementation Training Details

Our method is implemented in Python with PyTorch and
trained on 4 NVIDIA Tesla A100 GPUs, each with 80GB
memory. We use the AdamW optimizer with an initial
learning rate of 0.0008 and a weight decay factor of 0.1.
The training was performed for a total of 200 epochs on the
constructed PETS-5k dataset. The batch size is set to 12
with a volumetric input patch size of 128×128×128. To
handle the learning rate schedule, we employed the Multi-
StepLR scheduler, which adjusts the learning rate in prede-
fined steps with 120 and 180 epochs, with a gamma value of
0.1, indicating that the learning rate is reduced by 10% of its
original value at each step. In distributed training scenarios,
we utilized gradient accumulation with 20 steps to simu-
late larger effective batch sizes, which can improve model
performance by providing a more accurate estimate of the
gradient. For total loss in the training loop, the ramp-up
trade-off weighting coefficient λ is scheduled by the time-
dependent Gaussian function as λ = ωmax ∗e−5(1−t/tmax),
where tmax is the maximum training iteration, ωmax is the
maximum weight set as 0.1 and β is set to 5. The weighting
coefficient can avoid the domination by misleading targets
at the early training stage.

B.3. 2D/3D Prompt Generation Strategy
As stated in the article, the input manual prompts are sim-
ulated based on the ground-truth mask for interactive seg-
mentation. Since the original SAM [3] and MedSAM [4]
are designed for 2D segmentation tasks and cannot han-
dle 3D inputs directly, a slice-by-slice procedure is con-
ducted for the segmentation of the volume. The segmen-
tation procedure of 2D foundation models necessitate input
prompts for each 2D slice containing the target. In contrast,
SegAnyPET and other 3D SAM medical adaptions [6] can
be directly utilized to segment the target organs from in-
put volume with one or a few prompts. Figure 4 (a) and
(b) present the visualization of the segmentation workflow
of 2D and 3D foundation models. Based on the compar-
ison in Fig. 4 (c), directly utilizing 3D foundation model
for promptable segmentation can reduce the need of man-
ual prompting with less inference time.

B.4. Evaluation Metric
We use the Dice Similarity Coefficient (DSC) as the eval-
uation metric of the segmentation task, which is a widely
used metric in the field of image segmentation to evaluate
the similarity between two sets. The formula for DSC is
given by:

DSC(G,S) =
2|G ∩ S|
|G|+ |S|

where G represents the ground truth segmentation and S
represents the predicted segmentation. DSC ranges from 0
to 1, where 1 indicates perfect overlap between the ground
truth and the predicted segmentation.



Figure 4. Visualization of different prompting strategies. (a) The segmentation workflow of 2D foundation models. (b) The segmentation
workflow of 3D foundation models. (c) Inference time comparison of different prompting strategies.

Method SAM [3] MedSAM [4] SAM-Med3D [6] SegAnyPET

Prompt N points 3N points 5N points N points 3N points 5N points 1 point 3 points 5 points 1 point 3 points 5 points

Liver 31.02 38.24 51.51 3.91 37.18 48.19 59.06 73.44 78.47 76.70 83.01 83.75

Kidney-L 6.89 9.80 18.65 0.63 22.53 26.78 67.64 71.93 70.86 75.97 77.36 77.86

Kidney-R 7.08 9.97 17.69 1.08 25.82 33.37 54.82 62.57 63.71 71.56 73.95 75.25

Heart 18.79 23.06 30.93 0.78 29.43 32.15 48.91 53.84 55.14 67.62 70.95 71.64

Spleen 11.05 15.14 23.94 0.74 30.52 32.53 37.58 43.59 49.69 77.97 80.16 80.84

Aorta 2.81 4.00 7.69 1.53 23.34 24.24 19.79 24.07 27.47 16.00 18.73 22.57

Lung-LL 13.16 15.49 21.93 2.84 21.81 22.19 32.27 38.05 41.77 13.32 24.09 26.73

Lung-LR 16.49 19.45 26.11 1.65 26.48 28.52 45.18 47.99 49.08 26.67 37.87 41.35

Lung-UL 15.18 18.38 26.42 1.48 22.18 23.33 51.69 60.23 64.18 10.80 18.04 19.14

Lung-UR 18.36 21.65 29.13 1.70 29.10 33.74 41.31 48.86 49.92 19.08 39.95 43.34

Lung-MR 11.94 15.32 21.11 3.26 29.52 30.25 28.55 37.04 42.76 16.36 25.72 28.69

Prostate 3.96 6.60 17.51 0.96 23.80 29.71 31.52 43.11 43.48 35.93 38.47 39.87

Table 2. Generalization performance to unseen out-of-distribution AutoPET-Organ dataset with comparison to state-of-the-art general-
propose foundation models for interactive segmentation from PET images.



Figure 5. Visualization of an example case for whole-body tumor lesion segmentation of AutoPET dataset. The tumor regions are visualized
in red.

Model TotalSegmentator [7] SAM-Med3D-turbo SAM-Med3D-turbo SegAnyPET

Modality Registrated CT Registrated CT PET PET

Prompt Auto 1 point 3 points 5 points 1 point 3 points 5 points 1 point 3 points 5 points

Avg DSC 88.71 66.59 73.77 76.01 72.09 76.58 78.35 90.49 90.90 91.05

Table 3. Quantitative comparison different automatic and promptable segmentation models for organ segmentation from CT and PET
images.

C. Additional Experiments and Discussion
C.1. Comparison with Segmentation from CT
Since the data used in this work are whole-body PET/CT
images, we conduct additional evaluations with models for
automatic and promptable organ segmentation from CT im-
ages. Given that the segmentation is used to evaluate the
organ metabolic intensity from PET, it is necessary to reg-
ister the CT to the resolution of PET before segmentation.
We compare SegAnyPET with state-of-the-art CT segmen-
tation model TotalSegmentator [7] and SAM-Med3D-turbo
applied to both registered CT and PET images Through the
experimental comparison between the registered CT and
PET in Tab. 3, we observe that the performance of seg-
mentation from CT is inferior to that of direct segmenta-
tion from PET. This performance gap, combined with the

long-standing and significant concern of reducing radiation
exposure, underscores the importance of developing a PET-
only segmentation model which could be compatible to di-
verse scenarios, including PET/MRI or CT-free PET with
self-attenuation correction.

As PET images often come with corresponding struc-
tural CT and MRI images for attenuation correction, we
plan to extend SegAnyPET to a multi-modal scenario by
utilizing the information from these modalities to assist in
the segmentation procedure, thereby improving the overall
performance of the segmentation process.

C.2. Generalization to Unseen Dataset for Organ
Segmentation
We evaluated the generalization ability of SegAnyPET
to unseen out-of-distribution AutoPET-Organ dataset with



comparison to state-of-the-art general-propose foundation
models for interactive segmentation. As shown in Tab. 2,
we observe that SegAnyPET achieves satisfying generaliza-
tion ability on OOD data and outperforms existing models
across different prompt settings for training-visible organs.
For training-invisible organs, while it surpasses SAM and
MedSAM, it lags behind SAM-Med3D. One possible expla-
nation is that SegAnyPET is trained on relatively few targets
with 5 categories. In contrast, SAM-Med3D is trained on
a large amount of 245 categories including multiple organs
and lesions. Some unseen targets for SegAnyPET like aorta,
lung lobes and prostate are visible to SAM-Med3D from
other modalities. We observe when generalized to unseen
targets or training-visible targets on OOD data, SegAnyPET
outperforms existing models. However, when encounter-
ing both data and target shift, SegAnyPET exhibits slightly
weaker performance. We aim to improve current design
with techniques like using SuperVoxel to enhance training
label diversity [2] in future work.

C.3. Preliminary Analysis on Tumor Segmentation
In addition to the internal and external evaluation on or-
gan segmentation, we also conduct a preliminary evalua-
tion SegAnyPET with other state-of-the-art segmentation
foundation models for zero-shot tumor segmentation on Au-
toPET dataset. Table 5 presents the experimental results un-
der different prompt settings. Contrary to the conclusions of
organ segmentation, we observe that slice-by-slice segmen-
tation of 2D foundation models outperforms 3D foundation
models. A significant difference is that the target organs in
our task are all continuous entities, while the whole-body
tumors in AutoPET dataset are scattered multiple small tar-
gets located in various places, as shown in Fig. 5. Therefore,
the 3D model cannot directly segment all these scattered
tumors using one or a few prompt points. As an impor-
tant application scenario, we aim to enlarge the dataset with
instance-level tumor annotation for training and evaluation
of tumor lesion segmentation in the future.
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