Semantic-guided Camera Ray Regression for Visual Localization

Supplementary Material

Algorithm 2 R-RANSAC Algorithm

Algorithm 3 C-RANSAC Algorithm

Input: {dAl}f\Ll TE (inlier residual threshold), T4 (inlier
number threshold), N (number of samples), It7;** (maxi-
mum iteration number);

Output: R € R3*3;

1: # Initialization

2: Ity < 0; # iteration counter

3: Ipest < O; # best inlier set

4: Nggst < Q; # best inlier number

5: # Main RANSAC Iteration

6: repeat

7: Randomly sample {d;}N* from {d;}N;
8: Compute rotation Ryemp from {dz}fv % as Eq. (3);
9: # Collect inliers

10: Ntienmp < 0, # temporary inlier number
11: Liemp <+ 0; # temporary inlier set

12: for qu S {qu}iv do

13: Get residual: £/ = ||d;, Ryempd||2:
14: if £/ < TE then

15: Nty < N+ 1

16: di ™8 Tyomp:

17: end if

18: end for

19: if NjL, > NI, then
20 Nggst A Ntzgmp;
21: Lpest < Itemp;
22: end if
23: if N/”, > T} - N then
24: break
25: end if
26: Itg «+ Itg + 1;

27: until Ity > ItH*”
28: # Inlier Refinement
29: Compute R using all ray directions in Ip.s; as Eq. (3);

A. Details of RC-RANSAC

We provide more details about the proposed RC-RANSAC
algorithm, including the specific algorithm process and the
choice of parameters.

Algorithm flow. The detailed algorithm steps of R-RANSAC
and C-RANSAC are described in Algorithm 2 and Algo-
rithm 3. These two algorithms share many similar steps,
and only the residual calculation part is different. The R-
RANSAC utilizes the L2 distance between direction vectors
as the residual. On the other hand, the C-RANSAC adopts

Input: 7@, TCE (inlier residual threshold), TCN (inlier number
threshold), N, (number of samples), It."** (maximum itera-
tion number);

Output: ¢ € R3*1;

1: # Initialization

2: It. < O; # iteration counter

3: Tpest & O # best inlier set

4: legst < 0; # best inlier number

5: # Main RANSAC Iteration

6: repeat

7: Randomly sample {#; }.¥* from R;

8: Compute rotation ¢yem,, from {ﬂ}fv ® as Eq. (4);
9: # Collect inliers

10: Ntigmp < 0, # temporary inlier number
11: Licmp O; # temporary inlier set

122 for#; = [d, 7] € {#;}N do

13: Get residual: E;"™ = ||ciemp ¥ d—ml||3;
14: if ;""" < TF then

15: Nty N+ 1

16: 75 nig Licmp;

17: end if

18: end for

19:  if Ni > Nj, then
20 Nggst A Ntzenmp;
21: Tpeor < Itemp;
22: end if
23: if N/”, > T - N then
24: break
25: end if
26: Ite < It. + 1;

27: until It, > It
28: # Inlier Refinement
29: Compute ¢ using all rays in Ip.s; as Eq. (4);

the L2 distance between the moment vectors as the residual.

Parameter Settings. For R-RANSAC in Algorithm 2, we
set the inlier residual threshold (°) as Tg = (.5, the inlier
number threshold as 7/ = 0.8, and the sample number
is Ngp = 100. Finally, the maximum iteration number is
It’5** = 20. On the other hand, for C-RANSAC in Algo-
rithm 3, we set the inlier residual threshold (cm) as Tf =5,
the inlier number threshold as 7T’ FN = 0.8, and the sample
number is N, = 100. The maximum iteration number is
[t ** = 20.



L. Med. REm. (°) Med. tErr. (cm) Recall@5°/5cm
4 0.8 5.6 44.3
X 0.8 5.7 43.8

Table 7. Ablation Study about Loss Function. The experiments
are conducted on theMapFree s00006 dataset. We report the median
rotation and translation error, along with the recall.
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Figure 6. The observed Training Buffer Scaling Law in CRR.
The experiments are conducted on four scenes of MapFree. It can
be seen that large training buffer size leads to greater performance
improvement for our method compared to SCR-based ACE.

B. Additional Ablation Study

In this section, we provide two more ablation experiments
about our approach, including the training loss and model
design of the MLP Mappers.

Training Loss. We validate the effectiveness of center loss
in Eq. (16) in the s00006 scene of the MapFree dataset. The
results are presented in Tab. 7. It is evident that center loss
positively impacts network accuracy, particularly enhancing
the accuracy of camera translation. This indicates increas-
ing the sensitivity of model to geometric constraints during
training can improve overall performance.

The Number and Architecture of MLP Mappers. Addi-
tionally, for the number of sub-mappers in our mapper head
and the network depth of each sub-mapper, we conducted
ablation experiments on scenel of Indoor-6. With regard to
the mapper depth, we modify the MLP depth of the common
mapping, but keep the depth of the direction and moment
mapping MLP unchanged (both of them are 1-layer MLP).
We report the VL Recall@5°/5c¢m and the corresponding
model size. From Tab. 8, it can be observed that a combi-
nation of 4 sub-mappers, each composed of MLPs with 4
layers, yields the best accuracy.

Training Buffer Size. During training, we observe a sig-
nificant impact of the Training Buffer Size (TBS) on the
model performance. We collect specific data on MapFree

500005 ~ s00008 scenes for both our DIMM and SCR
method ACE, as illustrated in Fig. 6. It is evident that DIMM
accuracy is positively correlated with the TBS. In GDT, the
TBS refers to the number of patch-ray pairs used for train-
ing. The ray parameters corresponding to image patches are
almost always distinct with each other in CRR, unlike in
SCR where many image patches correspond to the same 3D
point. Therefore, a larger TBS implies more training data for
CRR-based DIMM, leading to more significant performance
improvement compared to SCR-based ACE. We refer to this
phenomenon as the CRR-specific Training Buffer Scaling
Law. It is important to note that DIMM generally surpasses
ACE with the same TBS, showcasing its superiority. We
have reported the results of methods with different TBS in
previous experiments, while ensuring their consistency with
the time and memory costs in Tab. 1. This scaling law also
leads to limitations of our method discussed in Suppl. C.

C. Limitation Discussion

In this section, we discuss the limitations of our method. One
of the main contributions of this work is the introduction
of Camera Ray Regression (CRR) into Visual 1Localization
(VL). Thus, we first compare our proposed CRR task with
previous SCR tasks. From these task differences, we identify
the main limitation of our method: its reliance on a large
training data volume due to local ambiguity.

C.1. Comparison between SCR and CRR

Due to the differences in camera pose representations, SCR
and CRR task models have to handle ambiguities differently
from learning. Specifically, the SCR task requires fitting the
mapping from image features to 3D point coordinates. This
mapping often includes ambiguity cases where different
image features correspond to the same 3D point (due to
the view point change or lightning variation) and where
similar image features correspond to different 3D points
(e.g., repeated textures). The former is more common than
the latter. To address this, the model must learn to memory
the scene invariance from training data, essentially capturing
the scene geometry.

In contrast, in the CRR task, it is rare for different im-
age features to correspond to the same ray, as this would
require specific camera movements. However, similar im-
age features corresponding to different ray parameters are
common. This includes ambiguities caused by repeated
textures (referred to as global ambiguity, same as that in
SCR) and, more significantly, local ambiguity inherent to
ray-based representations. In particular, when the camera
perspective changes, ray parameters can vary significantly,
whereas image features may remain largely unchanged. Due
to its commonality, local ambiguity is a key challenge in the
CRR task.

Since the ray parameters change with the variation of



M 1 2 4 6

_ 2 108%/88MB 19.1%/11.6MB 32.8%/13.1IMB  18.4%/14.6MB
S 4 10.1%/94MB  19.9%/12.6MB  44.4%/152MB  26.9%/17.7MB
6  93%99MB  20.3%/13.6MB  30.9%/17.2MB  31.8%/20.7MB

Table 8. Ablation Study about the Number and the Depth
of MLP Mapper on Indoor-6 Scenel. The rows are different
numbers of mappers (M), while the columns correspond to various
mapper depths (Darap). We report the VL Recall@5°/5cm (%)
and the head size (MB).

camera perspective, the variation degree of corresponding
image patch feature primarily depends on the depth continu-
ity within the image patch, followed by the scene lighting
conditions. When depth discontinuity exists within an im-
age patch, camera perspective changes can cause significant
variations in image features. In such cases, the model can
distinguish different ray parameters by memorizing scene
geometry, similar to the SCR task.

However, when depth within an image patch is contin-
uous, the image contents may remain largely unchanged
under camera perspective shifts (e.g., flat surfaces such as
walls), unless lighting conditions vary significantly. In such
scenarios, the model can infer ray parameters by leveraging
the geometry constraint and refer to ray estimations from
depth-discontinuous patches within the same camera view.
This is a strategy we incorporate in our method, referred to
the potential geometric constraint learning. Additionally, the
model may weakly learn lighting variations in local image
patches to help differentiate rays.

From the above analysis, it is evident that the CRR task
requires the model not only to memorize scene geometry
but also to perceive camera view point changes for local
disambiguation. On the other hand, while solving for the
camera pose from rays is simpler than using 3D-2D cor-
respondences (linear solution vs. PnP), the computational
burden is consequently shifted to the learning process of the
model. Fortunately, with powerful feature encoders such as
DINO, this learning task becomes feasible. However, com-
pared to the simpler SCR task, CRR also introduces certain
limitations due to the above local ambiguity, which we will
discuss next.

C.2. Limitation from Local Ambiguity

Since learning to perceive perspective changes is essential,
having sufficient training data is particularly important for
CRR. In SCR, as different image features can correspond
to the same 3D point, a large portion of patch-point pairs
in the training data is redundant. Consequently, in GDT,
a relatively small training buffer size is sufficient for the
model to learn the scene geometric information. An increase
in training data size does not significantly improve model
performance, e.g., in Fig. 6.

In contrast, for CRR, nearly all patch-ray pairs serve as
“new” training data for the model with different ray parame-

ters, providing effective supervision. Meanwhile, the extra
requirement for learning perspective variations in CRR ne-
cessitates a significantly larger training buffer size than in
SCR. This, in turn, increases both training time (i.e., map-
ping time) and computational costs as shown in Tab. 1.

More importantly, in certain scenarios where the scene
scale is large but the available image data is sparse, the CRR
task suffers from insufficient training data, such as the Cam-
bridge Landmarks dataset [15]. As a result, our method
may fail in these cases. To address this limitation, recent
work [18] on using 3DGS for VL task data augmentation
offers a potential solution. By generating additional effective
patch-ray pairs, these approaches can provide enhanced su-
pervision for CRR model training. We leave this exploration
for future work.

D. Additional Qualitative Results
In this section, more visualization results are presented.

D.1. Camera Pose Visualization

Firstly, we provide some camera pose visualization results
in Fig. 7. There are 10 random samples from each scene
of Indoor-6 in the figure. We show differences between the
camera poses from our method and corresponding ground
truth. It can be seen that our methods can achieve accurate
pose regression. Meanwhile, 3D scene information is hard
to obtain from the camera rays regressed by our method,
providing effective privacy preserving.

D.2. Semantic Attention Visualization

In addition to visualization results in Fig. 5 and descriptions
in Sec. 4.3, we provide more results in Fig. 8 and Fig. 9 to
show some interesting cases resulting from the proposed se-
mantic attention module. The color bars on the bottom of the
images represent the numerical size of the attention scores
from different MLP mappers, as shown in Fig. 5. A com-
parison of these figures reveals that different image contents
correspond to varying attention scores of mappers, which
implies a semantic-based spatial segmentation in our model.
For example, the fireplace in Fig. 8 elicits a high attention
score from the mapper #3 (the blue bar), but low attention
from the mapper #2 (the green bar). The sofa in Fig. 9, how-
ever, receives high attention from the mapper #2 (the green
bar). This suggests that different MLP mappers learn to fo-
cus on distinct image regions based on semantic information.
The phenomenon naturally emerges during training in our
semantic attention module, aligning with our design goal
of using multiple MLP mappers to encode scenes based on
semantic-based spatial segmentation and adaptively fusing
their outputs through the attention mechanism under seman-
tic guidance. On the other hand, the mapper #1 (the red bar)
and the mapper #4 (the cyan bar) are consistently activated
in both Fig. 8 and Fig. 9. This can be interpreted as these
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Figure 7. The qualitative results in Indoor-6 benchmark. We randomly sample 10 frames from the six scenes to visualize their camera
pose comparison between our method and the ground truth. The median rotation and translation errors of these samples are presented as

well.
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Figure 8. The qualitative results in Indoor-6 benchmark. The color bars on the bottom of the images are attention score visualization of
MLP mappers, cf. Fig. 5. In these figures, it can be seen that the score of the mapper #2 (the green bar) is minor, compared to the mapper #3
(the blue bar). At the same time, a fireplace in the images seems to be an anchor of high attention scores of mapper #3 (the blue bar).

two mappers may be responsible for global scene memory,
implying that a hierarchical scene segmentation also exists
in our mapper head. Overall, the proposed semantic atten-
tion module facilitates a soft multi-mapper ensamble, which
implicitly performs hierarchical and semantic-based scene
segmentation to organize mapper memory.

D.3. Ray Error Visualization

To further highlight the importance of the global perception
in our method, we provide ray error map visualization re-
sults in Fig. 10 to compare feature encoders with and without
global perception, in addition to Fig. 4. From the figure, it
can be seen that the ray errors are concentrated in genuinely
challenging areas after incorporating global perception, such



Figure 9. The qualitative results in Indoor-6 benchmark. The color bars on the bottom of the images are attention score visualization of
MLP mappers, cf. Fig. 5. Comparing to Fig. 8, these figures have quite different contents, and the mapper #2 (the green bar) showcases
larger attention scores than the mapper #3 (the blue bar). Similarly, a sofa appears frequently in these images, leads to high attention of the

mapper #2 (the green bar).

o

@
8
o
8

£

6

2

i

>
8
&

Error Maps w/o
glob. perception

7
S
Q

Error Maps

@ b) @ (@)

Figure 10. The ray error distributions with and without global perception in feature encoder. It is evident that ray errors accumulate in
particularly challenging areas after incorporating global perception into the features. The reduction of diffused ray errors can be attributed to
the rich semantic information provided by global perception, which also facilitates ray correction through geometric constraints.

as textureless backgrounds with continuous depth (Fig. 10
(b), (c),(d), (e)) and repetitive patterns (Fig. 10 (a), (), (h)).
However, without the global perception, the ray errors spread
in much larger regions, e.g., in Fig. 10 (b), (f). This can be
interpreted as that the learning of underlying geometric con-
straints provides effective ray correction (as shown in Fig. 4),
which is highly beneficial for the disambiguation in CRR. On
the other hand, the remaining ray errors in our method tend
to concentrate in regions that exhibit minimal appearance
change under varying camera perspectives, which reveals
that local ambiguity remains a critical challenge in the CRR
task. Therefore, future work could improve the local disam-
biguation, particularly for textureless and repetitive patterns.



