
A. Appendix
A.1. Additional Details for Table 1
Detailed dataset setting is in Table 1. We provide addi-
tional configuration details specifically for the Food-101
dataset in Table 2. Settings for the remaining datasets fol-
low USB [10]. For the Food-101 dataset, we use a ViT-base
model [5] with a patch size of 16 and an image size of 224.

Table 1. Details of Datasets
Dataset #Classes Fine-grained? #Labeled

Food-101 [1] 101 ✓ 404 / 1010
CIFAR-100 [7] 100 ✓ 200 / 400
Semi-Aves [9] 200 ✓ 5959

STL-10 [3] 10 × 40 / 100
EuroSAT [6] 10 × 20 / 40

Table 2. Additional Hyper-parameters for Table 2

Dataset Food-101
Image Size 224
Model ViT-B-P16-224
Weight Decay 0.03
Layer Decay Rate 0.75
LR Scheduler η = η0 cos

(
7πk
16K

)
Weak Augmentation Random Crop,

Random Horizontal Flip
Strong Augmentation RandAugment [4]

A.2. Pseudo-Code
The pseudo-code for our method is shown in Pseudo-

code 1

A.3. Additional Study
We hypothesize that our method boosts SSL performance
through two key reasons: (1). Aligning text embeddings
of ground-truth labels with visual representations helps
the model capture subtle visual differences through textual
cues, improving stability and robustness during initial train-
ing. (2) Even incorrect pseudo-labels can be beneficial if
their semantics are close to the ground truth, guiding vi-
sual representations toward more accurate clusters and en-
hancing generalization. Thus, we study the impact on initial
model and benefit under wrong pseudo-labels.

Impact to Initial Model. We first investigate how align-
ing ground-truth label names with visual representations
improves the initial model. To analyze this, we assume the
initial model is trained solely on labeled images using su-
pervised learning. We then compare the performance of
standard supervised training with supervised training en-
hanced by class-aware contrastive learning, as shown in
Table 3. The results demonstrate that incorporating class-
aware contrastive loss enhances supervised training perfor-

Pseudo-code 1: SemiVisBooster
class SemiVisBooster:

def init (self, label names):
# [Class#, text embs dims]
self.text embs bank = LLM(label names).detach()
# Other initializations ...

def train one batch(self, X , Y , Uw, Us):
# X,Y:labeled images and labels
# Uw,Us:weak and strong augmented
# unlabeled images
outputs = self.model(torch.cat([X , Uw, Us])
logits X , logits Uw, logits Us = outputs[“logits”]
feats X , feats Uw, feats Us = outputs[“feats”]
# =========Base SSL loss==========
# mask: pseudolabel selection mask from base SSL
Ls,Lu, mask, pseudolabels = baseSSL(...)
# ==Class-aware Contrastive loss==
text embs bank = self.proj(self.text embs bank)
LTEDS = TEDS(text embs bank)
V embs = torch.cat([feats X, feats Us[mask]])
labels = torch.cat([Y , pseudolabel[mask])
T embs = text embs bank[labels]
Lc = Class-aware CL(V embs, T embs, labels)
# λu, λc and λt are loss weights
Ltotal = Ls + λu ∗ Lu + λc ∗ Lc + λt ∗ LTEDS
# Backpropagation ...

Table 3. Impact on initial model: aligning ground-truth label
names with visual representations enhances the initial model.

Method Food-101

404 1010

Supervised 27.3 47.3
Supervised + Class-aware Contrastive 30.9 50.2

Table 4. Benefit under wrong pseudo-label: Partial semantic
alignment, even with incorrect pseudo-label names, enhances rep-
resentation learning.

Method Food-101

404 1010

Generated pseudo-label accuracy 27.3 47.3

FixMatch F 35.8 60.3
FixMatch F + Class-aware Contrastive 35.6 65.3

mance. This improvement occurs because aligning text em-
beddings with visual embeddings strengthens the model’s
ability to learn more effective visual representations.

Benefit under wrong pseudo-label To fairly evaluate
the benefit of class-aware contrastive learning under in-



correct pseudo-labels, it is necessary to ensure consistent
pseudo-label accuracy across comparisons. This consis-
tency allows for a direct comparison between standard SSL
methods and those incorporating class-aware contrastive
learning. However, maintaining such consistency is chal-
lenging because pseudo-label accuracy in SSL methods
dynamically changes during training. In traditional SSL
methods [8], although gradients are not backpropagated
to update the pseudo-label generator, the generator shares
weights with the in-training model, causing pseudo-label
predictions to evolve at each step. Advanced SSL meth-
ods, such as FlexMatch [12], FreeMatch [11], and Soft-
Match [2], use dynamic thresholding for pseudo-label sam-
pling, further complicating the effort to ensure consistent
pseudo-label accuracy. To address this issue, we intro-
duce FixMatch F, an extension of FixMatch [8]. First, Fix-
Match F adopts a fixed confidence threshold for pseudo-
label selection to ensure consistency in the labeling crite-
ria. Second, we pre-train the model on supervised data and
freeze it during pseudo-label generation. This prevents the
model from updating during SSL training, ensuring that
pseudo-label accuracy remains consistent throughout the
process.

As shown in Table 4, class-aware contrastive loss does
not improve SSL performance when pseudo-label accuracy
is very low, such as 27.3%. This limitation arises because
the alignment of pseudo-label names with visual embed-
dings relies on semantic similarity between the two. When
pseudo-labels are highly inaccurate, the semantic informa-
tion they convey is incorrect, offering no benefit to the
model. However, as pseudo-label accuracy improves, the
performance impact of class-aware contrastive learning be-
comes significant. This improvement occurs because even
partial semantic alignment between pseudo-label names and
visual embeddings enhances the model’s ability to learn ac-
curate visual representations, leading to better overall per-
formance.

Robustness of TEDS. The accuracy gain from TEDS
decreases as more labeled data becomes available, because
the model can learn subtle visual differences from labeled
data (Table 5). The visual-text alignment loss encourages
mutual enhancement: better visual representations lead to
more distinct text embeddings, and vice versa. With more
labels, the challenges naturally diminish. Our target is to
address fine-grained challenges under limited labels, where
the visual features are not distinct. So, TEDS is important.
In addition, with more labeled data, TEDS still provides
benefits and does not degrade performance. This confirms
that TEDS is most beneficial under low-label regimes.
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