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A. Pre-training Module & Loss

A.1. Multi-Granularity Contrastive Learning

We implement the multi-granularity contrastive learning
proposed in SkySense[10] for self-supervised learning
across multiple modalities and spatial granularities. Given
the input set {xHR, xMS , xSAR}, two separate collections
of augmented views, denoted as {ui} and {vi}, are gen-
erated through random augmentations, where where i ∈
{HR,MS, SAR}. These views ui and vi are then in-
put into the student and teacher branches respectively. In
the student branch, let Ti represent the tokenizer for each
modality and U the unified transformer backbone of Sky-
Sense V2. The weights for the teacher branch are calculated
as the exponential moving average (EMA) of the student
branch weights: T ′

i = EMA(Ti) , U ′ = EMA(U)s. This
procedure yields spatial features as described in Equation 1:

Fi = U(Ti (ui)), F
′
i = U ′(T ′

i (vi)) i ∈ {HR,MS, SAR}.
(1)

By applying multi-modal temporal fusion and geo-context
integration [10] to Fi and F ′

i , we obtain the final features
Ffus and F ′

fus. We then initiate pixel-level, object-level,
and image-level contrastive learning to progressively ac-
quire coarse-to-fine spatial features for various tasks.

Pixel-level Loss. Each temporal slice of spatial feature
Fi can be viewed as a pixel-level feature Fpix

i ∈ RNS×d.
The pixel-level contrastive learning loss, denoted as Lpix is
calculated by averaging all LCL over both spatial (s) and
temporal (t) dimensions, as described in Equation 2. Here,
fpix
i ∈ Rd represents a feature vector from Fpix

i in specific
location, and fpix′

i is its correspondence at the same geo-
location. LCL denotes the learning loss [2] between fpix

i

and fpix′
i :

Lpix(Fi, F
′
i ) =

1

NSTi

∑
s

∑
t

LCL(f
pix
i , fpix′

i ). (2)

Object-level Loss. The object-level features F obj
i ∈

RNC×d are generated from unsupervised clustering on
pixel-level feature vectors fpix

i in a single RSI, where NC

is the number of clusters. For clustering, we employ the
Sinkhorn-Knopp algorithm [1], as used in [10]. Each clus-
ter center, denoted as fobj

i ∈ Rd serves as a generalized
representation for a collection of fpix

i . This cluster center
typically corresponds to a specific ground object or seman-
tic concept. We calculate the object-level contrastive learn-
ing loss as follows:

Lobj(Fi, F
′
i ) =

1

NCTi

∑
s

∑
t

LCL(f
obj
i , fobj′

i ). (3)

Image-level Loss. The image-level feature F img
i ∈ Rd is

simply an average pooling result from Fpix
i . The image-

level contrastive learning loss is defined as follows:

Limg(Fi, F
′
i ) =

1

Ti

∑
t

LCL(F
img
i , F img′

i ). (4)

Finally, the fine-grained contrastive learning loss
LFGCL is the sum of pixel-, object- and image-level con-
trastive learning losses, as described in Equation 5. Sub-
sequently, we develop multi-modal loss LMGCL as shown
in Equation 6. The multi-granularity concept is reflected in
two main dimensions: spatial and modal. From a spatial
perspective, contrastive learning is executed at the pixel,
object, and image levels, enabling representation learning
that comprehensively captures different spatial dimensions.
From a modal perspective, we perform contrastive learning
on both the features of individual modalities, denoted as Fi,
the fused multi-modal features, represented as, Ffus:

LFGCL(Fi, F
′
i ) =

∑
n∈{pix,obj,img}

Ln(Fi, F
′
i ), (5)

LMGCL =
∑

i∈{HR,MS,SAR}

LFGCL(Fi, F
′
i )

+ LFGCL(Ffus, F
′
fus).

(6)
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A.2. Dense Image-Text Alignment
In addition to the LMGCL and LQSACL losses, we in-
troduce an auxiliary supervision strategy using Open-
StreetMap (OSM)1 to enhance dense interpretation capa-
bilities. OSM is an open-source, global-scale database that
provides pixel-level land-cover and land-use categories. For
multi-modal input imagery, we first collect the correspond-
ing pixel-level OSM labels. Each pixel’s class name is
converted into a text representation using the CLIP [26]
text encoder, and its visual representation is aligned with
this text representation. Our experiments demonstrate that
this dense image-text alignment encourages SkySense V2
to learn dense and semantic-aware representations.

Specifically, assuming the category set of OSM includes
K classes, we first encode all class names to text representa-
tions F text ∈ RK×D with the CLIP text encoder, where D
denotes the number of feature dimensions. Given a vision
feature F ∈ RN×D extracted by the SkySense V2 back-
bone, we maximize the similarity between each pixel’s vi-
sion feature and its corresponding text feature while mini-
mizing the similarity with non-matching text features. The
dense image-text alignment loss LITA is then formulated as

LITA = − 1

n
log(

∑
i∈n

exp(Fi ∗ F text
j /τ)∑K

k=1 exp(Fi ∗ F text
k /τ)

), (7)

where j denotes the label index of the i-th vision feature,
and τ is a temperature parameter that controls the smooth-
ness of the logits. By aligning the vision and text repre-
sentations for every pixel as described in Eq. 7, SkySense
V2 generates a more fine-grained interpretation of the input
imagery.

A.3. Unsupervised Geo-Context Prototype Learn-
ing

Different regions are characterized distinct geographic land-
scapes [12, 13] influenced by variations in culture, topog-
raphy, and climate. SkySense [10] has demonstrated that
this regional geo-context benefits the interpretation of re-
mote sensing imagery [5, 9, 13, 19]. Following the ap-
proach of SkySense [10], we employ unsupervised geo-
context prototype learning (GCPL) to group similar Fmm

fus .
And these features are integrated as implicit geo-knowledge
over a wide geo-spatial range to augment original feature
during pre-training. Specifically, we divide the globe into
NR regions and initialize a region-specific prototype set
P ∈ RNR×Np×d. Each prototype is learned based on Fmm

fus .
We leverage the geo-location of the RSI to retrieve the re-
gional subset Pr ∈ RNp×d from P . Then, we calculate the
cosine similarity matrix M ∈ RNS×Np between Fmm

fus and

1https://www.openstreetmap.org/

Pr:

M =
Fmm
fus · PT

r

∥Fmm
fus∥∥Pr∥

. (8)

The Sinkhorn-Knopp (SK) algorithm [1] on M is uti-
lized to find the optimal assignment matrix S ∈ RNS×Np

between Fmm
fus and the prototypes. The SK algorithm incor-

porates a uniform distribution constraint to circumvent triv-
ial solutions while striving to achieve the highest similarity
possible. Subsequently, we utilize S to generate an updated
value for current sample’s correspondingPr, denoted asPr.
This process is detailed as follows:

Pr = STFmm
fus . (9)

Afterwards, we update Pr through EMA [11] as in Equa-
tion 10, where m ∈ [0, 1) is a momentum coefficient.

Pr ← mPr + (1−m)Pr. (10)

Each Pr is updated during pre-training and serves as a fixed
geo-context for downstream tasks. GCPL is applied exclu-
sively to the student branch, extracting generalized region-
aware representations from numerous RSI within a consis-
tent region. This provides complementary information to
enhance the features of individual RSI.

B. Downstream Usage of SkySense V2
After pre-training, we utilize the parameters from the
teacher branch for downstream tasks, as shown in Figure 1.
Each pre-trained module can be used independently or in
combination with others, with the selected modules either
frozen or fine-tuned. For single-modal static downstream
tasks, we retain the unified transformer backbone and ac-
tivate the specific tokenizer. Additionally, we add a task-
specific head tailored to the particular task. In single-modal
temporal downstream tasks, we incorporate the pre-trained
fusion transformer to process time series feature data from
a single modality. This fusion transformer integrates tem-
poral information, enabling the model to capture dynamic
patterns and trends over time, which are crucial for ap-
plications such as crop identification or change detection.
For multi-modal downstream tasks, the fusion transformer
is employed to integrate features from different modali-
ties. This integration addresses both modality-specific and
temporal aspects, allowing the model to leverage comple-
mentary information from various data sources. By fusing
multi-modal data, SkySense V2 enhances its ability to per-
form complex tasks that require the synthesis of diverse in-
formation. This flexibility ensures that SkySense V2 can
be effectively applied to a wide range of downstream ap-
plications, maintaining high performance while adapting to
varying task demands.
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Figure 1. Overview of Downstream Usage of SkySense V2. Each
pre-trained module can be utilized independently or in combina-
tion, with options to freeze or fine-tune the selected modules based
on the specific downstream task requirements.

C. Pre-training Implementation Details

SkySense V2 is pre-trained using a batch size of 1024, dis-
tributed across 128 H20 GPUs. The model undergoes a to-
tal of 600k iterations, utilizing the AdamW optimizer [23]
with β1 = 0.9, β2 = 0.999. The learning rate is initially
set to 2 × 10−4 and decays to 1 × 10−6 following a co-
sine annealing schedule [22]. Similarly, the weight decay
follows a cosine schedule, starting at 0.04 and increasing
to 0.2. Additionally, to maintain stable training, the gradi-
ent is clipped at an L2 norm of 3.0 for all parameters. The
momentum in EMA updating for teacher network is initial-
ized as 0.996 and decay to 1.0 with cosine schedule. The
loss weights for loss LMGCL,LQSACL,LITA are set as:
λ1 = 1.0, λ2 = 1.0, λ3 = 1.0. The weight of MoE auxil-
iary loss is set to 0.01. The number of queries of QSACL is
set to 16. The whole pre-training progress takes 44500 H20
GPU hours, and its computational complexity is 8109.52
GFLOPs.

For high-resolution optical imagery (HROI), we apply
augmentations including Gaussian blur, solarization [8],
random color jitter, random flips, and random rotations. In

terms of multi-spectral imagery (MSI) and synthetic aper-
ture radar imagery (SARI) time series, we randomly select
a fixed-sized sequence (20 for MSI and 10 for SARI) from
the original one and perform random disturbances on the
RSI acquisition date. We follow the global and local multi-
view cropping strategy in [1, 10], with 2 global views and
6 local views being used respectively.

Following SkySense[10], the multi-modal temporal fu-
sion transformer module contains 24 basic transformer en-
coder layers. Additionally, a single basic transformer de-
coder layer is employed for query-based semantic aggrega-
tion contrastive learning. For GCPL, the globe is segmented
into 4096 regions, each covering an area of roughly 4294
square kilometers and consisting of 100 prototypes.

D. Downstream Tasks Training Implementa-
tion Details

D.1. Semantic Segmentation
Semantic segmentation is widely used in remote sensing to
automatically extract land use classes and ground instances.
Considering factors such as spatial resolution, spectrum
and number of categories, we select four popular datasets
for the semantic segmentation task: DynamicEarthNet-
PlanetFusion (Dyna.-Pla.) [32], iSAID [38], Potsdam
[30], and DynamicEarthNet-Sentinel2 (Dyna.-S2). We
employ the UperNet [42] as the unified segmentation
head,implemented based on the MMSegmentation2, in line
with the approaches of [3, 31, 34]. Detailed fine-tuning set-
tings are provided in Table 1.

D.2. Horizontal & Oriented Objection Detection
Remote sensing images encompass a diverse array of ob-
jects, including buildings, vehicles, bridges and so on.
These objects are densely distributed and vary widely in
size, scale, and orientation, making their detection and iden-
tification a challenging task [39]. To evaluate the effec-
tiveness of RSFMs in oriented object detection, we use the
DIOR-R and FAIR1M datasets and implement the Oriented
RCNN [18] as the detection algorithm, in line with prior
studies [3, 10, 31, 34]. For assessing the horizontal object
detection capabilities of SkySense V2, we utilize the DIOR
dataset. Following the methodology of [10, 31], we employ
the Faster RCNN [27] as the detector. Additional details are
provided in Table 2.

D.3. Change Detection
Change detection focuses on identifying pixel-level re-
gional changes using bi-temporal or multi-temporal images.
Building upon the work of Sun et al. [31], we incorpo-
rate the backbones of various RSFMs into the BIT frame-
work [4] to evaluate their performance on the LEVIR-CD

2https://github.com/open-mmlab/mmsegmentation
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Dataset Dyna.-Pla. iSAID Potsdam Dyna.-S2
Activated
modality

HR HR HR MS

Optimizer AdamW AdamW AdamW AdamW
Input size 1024×1024 896×896 512×512 256×256

Input channel RGBNIR RGB NIRRG
B02-08, B8A,

B11-12
Base lr. 1e-4 1e-4 1e-4 1e-4
Lr. scheduler poly poly poly poly
Weight decay 0.01 0.01 0.01 0.01
Layer-wise

lr decay
0.8 0.8 0.8 0.8

Max iters. 80k 80k 80k 80k
Warmup linear linear linear linear
Warmup iters. 1.5k 1.5k 1.5k 1.5k
Warmup ratio 1e-6 1e-6 1e-6 1e-6
Drop path rate 0.2 0.2 0.2 0.2
Augmentations
RandomScaling ✓ ✓
RandomCrop ✓ ✓ ✓ ✓
RandomFlip ✓ ✓ ✓ ✓

Table 1. The finetuning setting in single-modal semantical seg-
metation tasks. The minimum and maximum values for random
scaling are 0.5 and 2.0, respectively, and the probability of a ran-
dom flip is 0.5.

Dataset DIOR DIOR-R FAIR1M
Activated
modality

HR HR HR

Optimizer AdamW AdamW AdamW
Input size 800×800 800 ×800 512×512
Input channel RGB RGB RGB
Base lr. 8e-5 8e-5 8e-5
Lr. scheduler multistep multistep multistep
Layer-wise

lr decay
0.85 0.85 0.85

Weight decay 0.05 0.05 0.05
Max epoch 12 12 8
Warmup linear linear linear
Warmup iters. 1k 1k 0.5k
Warmup ratio 1e-3 1e-3 1e-3
Drop path rate 0.2 0.2 0.2
Augmentations
RandomFlip ✓ ✓ ✓
RadnomRotate ✓
Head Faster RCNN Oriented RCNN Oriented RCNN

Table 2. The finetuning setting in object detection tasks. The prob-
ability of a random flip is 0.5.

dataset. Following previous approaches [10, 24, 25], we
utilize U-Net [29] as the segmentation head to assess the ef-
fectiveness of RSFMs in bi-temporal change detection tasks
using the OSCD dataset with multi-spectral imagery. Addi-
tionally, we use the DynamicEarthNet-Sentinel2 dataset to

Dataset LEVIR-CD OSCD Dyna.-S2
Activated
modality

HR MS MS

Optimizer AdamW AdamW AdamW
Input size 256×256 96 ×96 256×256

Input channel RGB
B02-08, B8A,

B11-12
B02-08, B8A,

B11-12
Base lr. 6e-5 6e-4 1e-4
Lr. scheduler LambdaLR ExponentialLR poly
Layer-wise

lr decay
0.9 0.9 0.8

Weight decay 0.01 1e-4 0.05
Max iters./epoch 200 epochs 100 epochs 80k iters
Warmup - - linear
Warmup iters. - - 1.5k
Warmup ratio - - 1e-6
Drop path rate 0.2 0.2 0.2
Augmentations
RandomCrop ✓ ✓
RandomFlip ✓ ✓ ✓
Head/Detector BIT U-Net UperNet
Loss CrossEntropy BCE CrossEntropy

Table 3. The finetuning setting in change detection tasks. The
probability of a random flip is 0.5.

evaluate model performance on semantic change detection
tasks, maintaining the same configuration as the segmenta-
tion task. Further settings are detailed in Section 3.

D.4. Scene Classification

We select two widely-used single-label scene classifica-
tion datasets: AID and NWPU-RESISC45. Additionally,
we utilize a multi-label multispectral scene classification
dataset, BigEarthNet-Sentinel2, and a temporal multispec-
tral scene classification dataset, fMoW-Sentinel2. The
AID and NWPU-RESISC45 (RESISC-45) datasets con-
sist of high-resolution optical images, while BigEarthNet-
Sentinel2 (BEN-S2) and fMoW-Sentinel2 (fMoW-S2) are
extensive multispectral image datasets. Our scene classifi-
cation experiments are carried out using a standard linear
classifier. Detailed implementation settings can be found in
Table 4.

D.5. Multi-Modal Semantic Segmentation

By integrating multi-modal data from a variety of sensors,
imaging techniques, resolutions, and spectral bands, we
can extract a richer and more distinctive set of features.
These features improve the ability to understand and in-
terpret the shape, size, and relationships among ground
objects. To evaluate the tasks of Time-insensitive Land
Cover Mapping and Time-sensitive Crop Mapping, we use
the DynamicEarthNet-MM (Dyna.-MM) dataset and the
PASTIS-MM dataset, respectively.
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Dataset AID RESISC-45 BEN-S2 fMoW-S2
Activated
modality

HR HR MS MS

Optimizer AdamW AdamW AdamW AdamW
Input size 320×320 320×320 128×128 96×96

Input channel RGB RGB
B02-08, B8A,

B11-12
B02-08, B8A,

B11-12
Base lr. 6e-5 6e-5 5e-5 8e-4
Lr. scheduler cosine cosine multistep cosine
Weight decay 0.05 0.05 0.01 0.05
Layer-wise

lr decay
0.9 0.9 0.9 0.9

Max epoch 200 200 100 30
Warmup linear linear - linear
Warmup epoch 5 5 - 5
Warmup ratio 0.01 0.01 - 0.2
Drop path rate 0.2 0.2 0.2 0.2
Augmentations
RandomErasing ✓ ✓
RandomCrop ✓ ✓ ✓
Mixup ✓
RandomFlip ✓ ✓ ✓ ✓

Table 4. The finetuning setting in single-modal semantical seg-
metation tasks. The minimum and maximum area ratio of random
erasing are 0.03 and 0.333, respectively, and the probability of a
random erasing is 0.3. The mixup ratio and probability are 0.8 and
1.0, respectively. The probability of a random flip is 0.5.

Dyna.-MM contains spatially and temporally aligned
multi-modal data, which include PlanetFusion imagery
from the DynamicEarthNet-PlanetFusion dataset, Sentinel-
2 multispectral imagery from the DynamicEarthNet-
Sentinel2 dataset, and Sentinel-1 SAR imagery. For the
SAR data, we utilize standard-calibrated Sentinel-1 GRD
data with VV and VH polarizations, selecting it based on
the geographical coordinates of the optical imagery. This
approach is the same as SkySense [10] and ensures the va-
lidity of our multi-modal experiments. For segmentation
tasks, UperNet is used as the segmentation head, and we re-
port the mean Intersection over Union (mIoU) metric. Ad-
ditional implementation details can be found in Table 5 (i).

PASTIS-MM [7, 10] is a dataset sourced from
SkySense[10], which is designed for fine-grained,
time-sensitive crop mapping. This dataset extends the
PASTIS-R dataset [7] by incorporating spatially aligned
high-resolution RGB images. PASTIS-MM aims to explore
the combined impact of high-resolution optical imagery,
medium-resolution temporal multispectral data, and tem-
poral synthetic aperture radar (SAR) data in the context of
time-sensitive crop mapping. The dataset was collected
based on geo-coordinates and acquisition dates from the
image tiles of the original PASTIS-R dataset, sourced from
[10]. PASTIS-MM comprises 2433 Sentinel-2 image tiles,

each with dimensions of 128×128 pixels, 10 spectral bands,
and a GSD of 10 meters. For each tile, the dataset includes
all available Sentinel-2 and Sentinel-1 acquisition data
from September 2018 to November 2019, along with addi-
tional high-resolution visible imagery. For segmentation,
we employ a naive Fully Convolutional Network (FCN)
head [21] and report Overall Accuracy (OA) based on the
official five-fold cross-validation of the dataset. Further
implementation details can be found in Table 5 (ii).

D.6. Multi-Modal Scene Classification
Following SkySense [10], we utilize the representative
BigEarthNet-MM (BEN-MM) dataset to evaluate the per-
formance of SkySense V2 in large-scale scene classifica-
tion tasks, with a focus on integrating optical and SAR data.
This dataset builds upon the BigEarthNet-Sentinel2 dataset
by adding corresponding Sentinel-1 SAR data, thereby en-
abling the assessment of multi-label scene classification us-
ing both MS and SAR modalities. BEN-MM enriches each
Sentinel-2 image patch from the BigEarthNet-Sentinel2
dataset with a preprocessed Sentinel-1 image patch taken
around the same time. Each Sentinel-1 patch retains the
annotation information from its corresponding Sentinel-2
patch and features a GSD of 10 meters. These patches
provide dual-polarization information channels (VV and
VH) and are collected in interferometric wide-swath mode.
Consistent with prior studies [6, 10, 35, 36], we keep the
same data splits as employed in the BigEarthNet-Sentinel2
dataset. Further implementation details can be found in Ta-
ble 5 (iii).

E. Comparison of Parameter Numbers with
SkySense

Model Name SkySense
SkySense V2

w/o MoE
SkySense V2

Tokenizer

0.21M
HR: 0.02
MS: 0.16

SAR: 0.03

0.09M
HR: 0.02
MS: 0.06

SAR: 0.01

0.09M
HR: 0.02
MS: 0.06
SAR: 0.01

Backbone

1260.31M
HR: 655.17
MS: 302.57

SAR: 302.57

661.40M 1994.10M

Modality prompt - 9.94M 9.94M
Fusion module 398.20M 347.01M 347.01M
Others 404.13M 490.49M 490.49M
Total 2062.85M 1508.93M 2841.63M

Table 6. Comparison of the number of parameters in different
modules between SkySense V2 and SkySense.

SkySense [10] employed three distinct backbones: Swin-
H for high-resolution (HR) optical data, ViT-L for multi-
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Task
(i) Multi-Modal Segmentation:

Time-insensitive LandCover Mapping
(ii) Multi-Modal Segmentation:

Time-sensitive Crop Mapping
(iii) Multi-Modal

Classification
Dataset Dyna.-MM PASTIS-MM BEN-MM
Optimizer AdamW AdamW AdamW

Input Size
planet: 1024×1024

sentinel2: 1024×1024
sentinel1: 1024×1024

gep: 4096×4096
sentinel2: 128×128
sentinel1: 128×128

sentinel2: 128×128
sentinel1: 128×128

Input channel
planet: RGBNIR

sentinel2: B02-08, B8A, B11-12
sentinel1: VV, VH

gep: RGB
sentinel2: B02-08, B8A, B11-12

sentinel1: VV, VH

sentinel2: B02-08, B8A, B11-12
sentinel1: VV, VH

Base learning rate 6e-05 6e-05 5e-05
Learning rate scheduler linear linear MultiStepLR
Weight decay 0.01 0.01 0.01
Batch size 8 8 256
Max iteration/epoch 6k iters 20k iters 100 epoch
Warmup linear linear -
Warmup iteration/epoch 150 iters 1500 iters -
Warmup ratio 1e-6 1e-6 -
Drop path rate 0.2 0.2 0.2
Augmentation RandomFlip RandomFlip RandomFlip
Head/Detector UperNet FCN Linear Classifier

Loss function CrossEntropy CrossEntropy
MultiLabel
SoftMargin

Table 5. The finetuning setting in multi-modal downstream tasks.

spectral (MS) data, and ViT-L for synthetic aperture radar
(SAR) data. In SkySense V2, the backbone parameters
are shared across different modalities, maintaining a few
separate parameters for modality-specific tokenizers and
prompts. Detailed comparisons are presented in Table 6. By
adopting this unified design, the total number of backbone
parameters for the three modalities has been reduced from
1,260 million to 661 million. Additionally, we incorporated
a mixture of experts (MoE) approach [16], which allowed
us to scale up the number of parameters to 1,994 million
(with 661 million activated). To sum up, our unified trans-
former backbone employs full parameter sharing across dif-
ferent modalities, presenting several key benefits: 1) As dis-
cussed in the ablation part in our paper, this parameter shar-
ing aggregates gradients from all modalities, thereby accel-
erating the convergence process. 2) It significantly boosts
parameter utilization efficiency, leaving enough room for
increasing additional capacity by incorporating MoE mod-
ules, which further enhances representation learning. 3) Our
unified model architecture and complete parameter sharing
simplifies the alignment of features across different modal-
ities.

F. Experiments
F.1. Influence of Image-text Alignment with OSM
OpenStreetMap is a global open-source data providing a
wealth of semantic classes. We utilize the CLIP text en-
coder [26] to transform categories into text representations

and then apply dense image-text alignment (ITA) to en-
hance pre-trained model’s capability for dense interpreta-
tion. To validate this approach, we conducted ablation ex-
periments on segmentation datasets, specifically iSAID and
Potsdam. Due to the resource-intensive nature of the whole
pre-training, we ensured a fair comparison by limiting it to
20,000 iterations. The fine-tuning process was kept consis-
tent with the approach outlined in Section D.1. The results,
presented in Table 7, demonstrate that image-text alignment
effectively improves the performance of dense tasks.

Dataset iSAID Potsdam
w/o ITA 67.45 88.77
w/ ITA 68.24 90.05

Table 7. Ablation results of image-text alignment in SkySense V2.

F.2. Features of Different Resolutions Derived from
Adaptive Patch Merging

Our Adaptive Patch Merging (APM) module, integrated af-
ter each stage of the unified backbone, can flexibly gener-
ate features with various resolutions based on specific re-
quirements. To evaluate the impact of different subsam-
pling activation conditions within APM, we conducted ab-
lation experiments on the segmentation datasets iSAID and
Potsdam. The fine-tuning process remained consistent with
the methodology outlined in Section D.1, and all mod-
els utilized parameters from the same pre-trained model.
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As shown in Table 8, generating higher-resolution features
through APM enhances the model’s performance. This im-
provement makes the model particularly advantageous for
deployment in environments where sufficient computing re-
sources are available.

Sub-sampling activation of APM downscale Dataset
Stage 2 Stage 3 Stage 4 iSAID Potsdam

✓ ✓ ✓ 1/8 71.87 95.86
✓ ✓ 1/4 71.92 95.85
✓ 1/2 72.55 96.76

− 72.88 97.03

Table 8. Experiment results of different sub-sampling activation
conditions within APM. All models were initialized with identical
parameters, differing only in their subsampling activation strate-
gies in APM.

F.3. Performance on Sensor Data Outside of Train-
ing

To further validate the generalizability of the pre-trained
model, we conducted experiments on three datasets col-
lected from different sensors: Five-Billion-Pixels (FBP)
[33] from the Gaofen-2 satellite, SPARCS [14] from the
Landsat-8 satellite, and AIR-PolSAR-Seg (APS) [37] from
the Gaofen-3 satellite. All these datasets utilize sensors dif-
ferent from those used in the training data. FBP comprises
over 5 billion labeled pixels across 150 high-resolution im-
ages, annotated into 24 categories covering artificially con-
structed, agricultural, and natural classes. SPARCS in-
cludes 80 images with a resolution of 1000 × 1000 pix-
els, annotated into 7 categories. APS consists of a PolSAR
image with a region of 9082 × 9805 pixels and 2000 im-
age patches, each sized 512 × 512 pixels. The experimen-
tal results on these three datasets are presented in Table 9.
SkySense V2 surpasses SkySense by an average of 1.8% in
mIoU, indicating that SkySense V2 possesses stronger gen-
eralization capabilities than SkySense. We attribute this im-
provement to the unified design, which allows the backbone
parameters to be trained with data from different modalities,
thereby enhancing the model’s ability to generalize effec-
tively.

Dataset Sensor SkySense SkySense V2
Five-Billion-Pixels Gaofen-2 65.31 66.82
SPARCS Landsat-8 72.57 74.32
AIR-PolSAR-Seg Gaofen-3(SAR) 53.21 55.32

Table 9. Results on datasets built from various sensors. The eval-
uation metric is mIoU.

F.4. Ablation of Modality-specific Prompt Tokens
in Downstream Tasks

After pre-training the model, there are two options for
handling Modality-specific Prompt Tokens (MSPT) during
downstream fine-tuning: 1) retaining the MSPT or 2) re-
moving the MSPT entirely. We assess the impact of MSPT
in two different settings: 1) single-modal tasks, where only
one modality is activated, and 2) multi-modal tasks, where
at least two modalities are activated. For the single-modal
setting, we conduct experiments using the RESISC-45 and
BEN-S2 datasets. For the multi-modal setting, we utilize
the BEN-MM dataset. As demonstrated in Table 10, our
findings indicate that MSPT can significantly enhance per-
formance in multi-modal tasks, primarily due to its ability
to increase the diversity of features of different modalities.

Dataset
RESISC-45
(TR=10%)

BEN-S2
(TR=10%)

BEN-MM

Activated modality HR MS MS,SAR
w/o MSPT 96.15 88.97 92.64
w/ MSPT 96.42 89.13 93.81

Table 10. Results of ablation study of modality-specific prompt
token in downstream tasks. ”TR” refers to training ratio, repre-
senting the proportion of training data relative to the entire dataset.

F.5. Ablation Studies about MoE in Pre-training
To quickly assess the impact of MOE-related configura-
tions, we pre-trained the model with 20,000 iterations for
each configuration. After pre-training, we evaluated the
model on the AID and RESISC-45 datasets using the k-NN
accuracy.

Varying the number of experts. We configured the uni-
fied backbone with varying numbers of experts to evalu-
ate performance relative to parameter size. The results,
shown in Table 11, indicate that as the number of experts
increases, the representational capacity of the model im-
proves. Although the configuration with 16 experts outper-
forms that with 8 experts, it requires an additional 1.6 bil-
lion parameters. This increase in parameters does not match
the marginal gain in performance. Consequently, we set the
number of experts to 8 in our SkySense V2 model.

#experts #parameters AID RESISC-45
4 1232.61M 89.05 82.57
8 1994.10M 91.00 85.11
16 3517.08M 91.23 85.97

Table 11. Ablation results of varing number of experts in MoE.
We report k-NN classification accuracy on AID and RESISC-45
datasets.

7



Varying the number of MoE blocks. Following prior
methods utilizing Mixture of Experts (MoE) [20, 40], we
integrate MoE modules into the last L transformer blocks,
substituting the original feed-forward network (FFN) lay-
ers. Each MoE module comprises 8 experts, all of which
maintain the FFN’s structural design but function as in-
dependent networks. We present ablation studies explor-
ing various configurations with different numbers of MoE
blocks (L = 2, 4, 6, 8) within the backbone. As shown
in Table 12, the results indicate that performance tends to
plateau at 6 MoE blocks.

L #parameters AID RESISC-45
2 1486.37M 89.63 83.45
4 1740.23M 90.14 84.37
6 1994.10M 91.00 85.11
8 2247.97M 91.11 85.43

Table 12. Ablation results of varing number of MoE blocks in
backbone.

Exploring different distributions of MoE blocks in back-
bone. Previous studies [20, 40] typically incorporate Mix-
ture of Experts (MoE) into the last few layers of a network.
This approach is motivated by two main factors: 1) deeper
routing decisions are more closely related to image classes
and contain richer semantic information [28], and 2) the last
layers have the most significant impact on classification per-
formance. However, the official implementation of Swin-
MoE [15]3 introduces an alternative strategy, distributing
MoE blocks evenly across all layers in whole backbone.
We tested both distribution strategies within the backbone
of SkySense V2. Our findings indicate that while the per-
formance difference between the two methods is minimal,
incorporating MoE blocks into the last layers offers a slight
advantage, as detailed in Table 13.

MoE block(layer) index
Total: 24

AID RESISC-45

3,7,11,
15,19,23

90.93 84.87

18,19,20,
21,22,23

91.00 85.11

Table 13. Comparison of different MoE distribution strategies
within the backbone of SkySense V2.

F.6. Ablation Studies about MoE in Downstream
Tasks

To further investigate the MoE, we conducted ablation ex-
periments during the downstream fine-tuning phase of a pre-

3https://github.com/microsoft/Swin-Transformer

trained MoE backbone. We selected the RESISC-45, BEN-
S2, and BEN-MM datasets, which encompass three modal-
ities: high-resolution (HR), multispectral (MS), and syn-
thetic aperture radar (SAR). Firstly, we examined whether
to fix the routing gate during downstream fine-tuning. As
shown in Table 14, despite the routing gate being trained
with a substantial amount of data during the pre-training
stage, fine-tuning for a specific task proves to be necessary.
Secondly, we experimented by randomly keeping one ex-
pert from the MoE block while removing the others, effec-
tively reducing the MoE feed-forward network (FFN) to a
plain FFN. The performance of this modified model is com-
parable to the fully pre-trained backbone without MoE, in-
dicating that each expert has been sufficiently trained and
possesses individual representational capabilities.

Dataset
RESISC-45
(TR=10%)

BEN-S2
(TR=10%)

BEN-MM

Activated modality HR MS MS,SAR
SkySense V2 96.42 89.13 93.81

SkySense V2 w/o MoE 95.61 88.76 92.95
SkySense V2

fixed routing gate
95.73 88.65 92.80

SkySense V2
random 1 expert

95.47 88.69 92.81

Table 14. Results of ablation study of MoE in downstream tasks.
”TR” refers to training ratio, representing the proportion of train-
ing data relative to the entire dataset.

F.7. Ablation Studies about the Number of Queries
in Query-based Semantic Aggregation Con-
trastive Learning

In Query-based Semantic Aggregation Contrastive Learn-
ing (QSACL) ablation study, we explore the influence of
different m learnable queries, which are used to aggregate
features with different semantics across multiple augmented
views of an image. We pre-trained the model with 20,000
iterations, experimenting with various numbers of queries.
After pre-training, we evaluated the model’s performance
on the AID and RESISC-45 datasets using k-NN accuracy.
The results, as shown in Table 15, indicate that with a
small number of queries, such as 4 or 8, performance drops
significantly. This decline occurs because the number of
queries is insufficient to capture the diverse semantic cate-
gories within an image, resulting in inadequate pre-training.
Conversely, when m = 8, the performance remains similar
to when m = 16, suggesting that 16 queries are sufficient
to capture the different semantics in an image, with addi-
tional queries offering no significant improvement in per-
formance.
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m AID RESISC-45
4 90.21 84.32
8 90.68 84.87

16 91.00 85.11
24 91.05 85.07

Table 15. Ablation results of varing number of MoE learnable
queries in QSACL.

F.8. Comparison with Random Initialization.
In this section, we use both SkySense pre-trained weights
and randomly initialized weights to fine-tune the same
backbone network across three datasets, each correspond-
ing to a different task. These tasks include scene classi-
fication with the AID dataset [41], object detection with
the DIOR dataset [17], and semantic segmentation with the
iSAID dataset [38]. The experimental results, which are
shown in Table 16, indicate a significant performance ad-
vantage for our pre-trained model compared to the model
trained from scratch across all three datasets.

Model AID DIOR iSAID

OA(TR=20/50%) mAP50 mIoU

Randm Init 66.82/90.78 56.36 48.34
SkySense V2 98.34/99.05 79.50 71.87

Table 16. Comparison of SkySense V2 with random initialization
and SkySense V2 with pre-training.
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Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch,
Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, et al. Bootstrap your own latent-a new approach
to self-supervised learning. Advances in neural information
processing systems, 33:21271–21284, 2020. 3

[9] Shaohua Guo, Liang Liu, Zhenye Gan, Yabiao Wang, Wuhao
Zhang, Chengjie Wang, Guannan Jiang, Wei Zhang, Ran Yi,
Lizhuang Ma, et al. Isdnet: Integrating shallow and deep
networks for efficient ultra-high resolution segmentation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 4361–4370, 2022. 2

[10] Xin Guo, Jiangwei Lao, Bo Dang, Yingying Zhang, Lei
Yu, Lixiang Ru, Liheng Zhong, Ziyuan Huang, Kang Wu,
Dingxiang Hu, Huimei He, Jian Wang, Jingdong Chen, Ming
Yang, Yongjun Zhang, and Yansheng Li. Skysense: A multi-
modal remote sensing foundation model towards universal
interpretation for earth observation imagery. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 27672–27683, 2024. 1, 2,
3, 4, 5

[11] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
9729–9738, 2020. 2

[12] Jingliang Hu, Lichao Mou, and Xiao Xiang Zhu. Unsuper-
vised domain adaptation using a teacher-student network for
cross-city classification of sentinel-2 images. The Interna-
tional Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, 43:1569–1574, 2020. 2

[13] Xin Huang, Yihong Song, Jie Yang, Wenrui Wang, Huiqun
Ren, Mengjie Dong, Yujin Feng, Haidan Yin, and Jiayi Li.
Toward accurate mapping of 30-m time-series global imper-
vious surface area (gisa). International Journal of Applied
Earth Observation and Geoinformation, 109:102787, 2022.
2

[14] M. Joseph Hughes and Robert H. Kennedy. High-quality
cloud masking of landsat 8 imagery using convolutional neu-
ral networks. Remote. Sens., 11:2591, 2019. 7

[15] Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang, Ze
Liu, Han Hu, Zilong Wang, Rafael Salas, Jithin Jose, Prab-
hat Ram, Joe Chau, Peng Cheng, Fan Yang, Mao Yang, and
Yongqiang Xiong. Tutel: Adaptive mixture-of-experts at
scale, 2022. 8

[16] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and
Geoffrey E. Hinton. Adaptive mixtures of local experts. Neu-
ral Computation, 3:79–87, 1991. 6

[17] Ke Li, Gang Wan, Gong Cheng, Liqiu Meng, and Junwei
Han. Object detection in optical remote sensing images: A

9



survey and a new benchmark. ISPRS journal of photogram-
metry and remote sensing, 159:296–307, 2020. 9

[18] Wentong Li, Yijie Chen, Kaixuan Hu, and Jianke Zhu. Ori-
ented reppoints for aerial object detection. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 1829–1838, 2022. 3

[19] Yinhe Liu, Sunan Shi, Junjue Wang, and Yanfei Zhong. See-
ing beyond the patch: Scale-adaptive semantic segmentation
of high-resolution remote sensing imagery based on rein-
forcement learning. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 16868–
16878, 2023. 2

[20] Zhili Liu, Kai Chen, Jianhua Han, Lanqing Hong, Hang Xu,
Zhenguo Li, and James Tin-Yau Kwok. Task-customized
masked autoencoder via mixture of cluster-conditional ex-
perts. ArXiv, abs/2402.05382, 2024. 8

[21] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 3431–3440, 2015. 5

[22] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. arXiv: Learning, 2016. 3

[23] Ilya Loshchilov and Frank Hutter. Fixing weight decay reg-
ularization in adam. CoRR, abs/1711.05101, 2017. 3

[24] Utkarsh Mall, Bharath Hariharan, and Kavita Bala. Change-
aware sampling and contrastive learning for satellite images.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5261–5270, 2023. 4

[25] Oscar Manas, Alexandre Lacoste, Xavier Giró-i Nieto,
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Keysers, and Neil Houlsby. Scaling vision with sparse mix-
ture of experts. In Neural Information Processing Systems,
2021. 8

[29] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III
18, pages 234–241. Springer, 2015. 4

[30] Jamie Sherrah. Fully convolutional networks for dense se-
mantic labelling of high-resolution aerial imagery. arXiv
preprint arXiv:1606.02585, 2016. 3

[31] Xian Sun, Peijin Wang, Wanxuan Lu, Zicong Zhu, Xiao-
nan Lu, Qibin He, Junxi Li, Xuee Rong, Zhujun Yang, Hao
Chang, et al. Ringmo: A remote sensing foundation model
with masked image modeling. IEEE Transactions on Geo-
science and Remote Sensing, 2022. 3

[32] Aysim Toker, Lukas Kondmann, Mark Weber, Marvin
Eisenberger, Andrés Camero, Jingliang Hu, Ariadna Pregel
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