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A. Implementation Details
A.1. Training Details
Our video generation model is built upon SVD [3], an
image-video diffusion model based on UNet. The train-
ing process incorporates a continuous-time noise scheduler
(Karras et al., 2022), enabling the model to learn to gradu-
ally denoise high-variance Gaussian noise. Specifically, we
define the noisy data as xt = x0 + n(t), where the added
Gaussian noise n(t) ∼ N (0, σ2(t)I). The iterative denois-
ing process corresponds to the probability flow ODE:

dx = −σ̇(t)σ(t)∇x log p(x;σ(t))dt,

where ∇x log p(x;σ(t)) is the score function pa-
rameterized by a neural network Dθ. The train-
ing objective focuses on denoising score matching:
E
[
∥Dθ(x0 + n;σ, c)− x0∥22

]
, with c representing

the conditioning information. We follow the EDM
framework, parameterizing the learnable denoiser as
Dθ(x;σ) = cskip(σ)x+ cout(σ)Fθ(cin(σ)x; cnoise(σ)).

In our work, we use a relative camera system to convert
all camera poses relative to the first frame located at the
world origin. First, we train the model at a resolution of
320 × 512 with a frame length of 25, for 50,000 iterations,
and we perform center cropping on the input images to stan-
dardize the resolution. Subsequently, we adjust the model to
a higher resolution of 576× 1024 and continue training for
another 10,000 iterations, setting the learning rate to 1e− 5
and using the Adam optimizer with a 1,000-step warm-up.
The training is conducted on 8 NVIDIA A800 GPUs with a
batch size of 16. It is important to note that we only train the
camera encoder, epipolar attention modules, and temporal
attention while keeping the weights of other parts frozen.
We first train on the Re10K and ACID datasets, with the
sampling interval of video frames linearly increasing from
2 to 10. After that, we incorporate the DL3DV dataset, ran-
domly sampling the video frame intervals between [2, 10]

to enable the model to adapt to different motion speeds.
We choose Lightning as the training framework, utilizing
mixed precision fp16 and DeepSpeed ZeRO-2 to enhance
efficiency. During inference, we implement the DDIM sam-
pler [51] alongside classifier-free guidance [21] to enhance
performance.

A.2. Evaluation Details
Video Generation. When using COLMAP to extract the
camera pose of the generated video, the reliability of the
obtained pose is often low. Therefore, we employ DUSt3R
for a more robust pose estimation. To compare with pre-
vious methods, we transform the camera coordinates of the
estimated poses to be relative to the first frame and normal-
ize the scale using the furthest frame. We then calculate the
rotation distance relative to the ground truth rotation ma-
trices of each generated novel view sequence, expressed as

Rdist =
∑n

i=1 arccos

(
tr(Ri

genR
iT

gt )−1

2

)
. We also compute

the Tdist =
∑n

i=1 ∥T i
gt − T i

gen∥2, which measures the Eu-
clidean distance between ground truth and estimated trans-
lations across n video frames.
Sparse View Reconstruction. To ensure a fair comparison
with feed-forward baselines [7, 8], we conducted experi-
ments on 256× 256 resolutions. To comprehensively eval-
uate our method, we compared the results of input views
under small and large overlap ratios. We employed RoMa
to determine the overlap ratio of image pairs. First, we ob-
tained dense matches from the first image to the second and
vice versa, considering pixels with matching scores exceed-
ing 0.005 as valid. Next, we calculated the overlap ratio for
each image pair by dividing the number of valid matched
pixels by the total number of pixels, with the final overlap
ratio defined as the minimum of the two directional calcula-
tions. Additionally, to compare with optimization-based re-
construction baselines [13, 29], we used only 2 ground truth
training images per scene and evaluated using 12 views.
The evaluation metrics included PSNR, SSIM, and LPIPS.

B. Discussions

B.1. Comparison with Recent Methods
ViewCrafter. ViewCrafter [77] leverages point cloud
rendering as a condition for fine-tuning video diffusion
models. However, constrained by Dust3R’s capabilities,
the approach may encounter challenges in synthesizing
novel views with extensive view range transformations,
particularly when generating front-view images from lim-
ited back-view inputs. Moreover, in scenarios where
DUSt3R fails—such as incorrectly predicting planar ge-
ometries—ViewCrafter’s performance can be significantly
compromised. In contrast, our proposed generation mod-
ule decouples from the reconstruction module, effectively



mitigating these limitations and enhancing view synthesis
robustness.
DimensionX. DimensionX [53] achieves promising results
by fine-tuning respective LORA models for different mo-
tion patterns. However, this method has some limitations:
first, it cannot generate more complex motion patterns; sec-
ond, it lacks effective control over the speed and ampli-
tude of motion. In contrast, our method introduces cam-
era embedding as the conditional signal, which effectively
solves the above problems, thereby enabling the genera-
tion of more complex motion patterns and providing precise
control over the speed and amplitude of motion.
ReconX. ReconX [34] initially constructs a global point
cloud representation and encodes it into a contextual space,
serving as 3D geometric conditional information for video
diffusion models. However, the method’s performance crit-
ically depends on the geometric reconstruction accuracy
of the underlying DUST3R algorithm. When DUST3R
fails to precisely align and reconstruct geometric structures,
the point cloud information injected into the video diffu-
sion model may introduce significant geometric distortions,
leading to suboptimal generation results. More importantly,
the current approach is limited to multi-view interpolation
scenarios, lacking an effective solution for single-view ex-
trapolation tasks
CAT3D. CAT3D [15] extends the text-to-image (T2I) gen-
eration model by a large-scale data-driven method to learn a
3D prior of the scene, which usually requires a large amount
of training time. In addition, the generation stage requires
rendering a large number of frames (about 100 frames) to
reconstruct the scene. We recognize that video genera-
tion models trained on large video datasets embed inher-
ent scene prior information, and therefore propose a new
method based on fine-tuning with a video diffusion model.
Our method speeds up convergence and retains the genera-
tive prior of the pre-trained video model, thereby enhancing
the model’s generalization ability. By introducing explicit
geometric constraints, we further improve the 3D consis-
tency of the generated scenes. Notably, during the infer-
ence stage, we utilize the geometric prior for initialization
and reconstruction, greatly reducing the number of images
required and the optimization time.

C. More Qualitative Results

C.1. More Generated Video Results

As shown in Figure 14, we present a series of gener-
ated video sequences covering different scenarios, includ-
ing indoor environments, outdoor landscapes, and object-
centered scenes. Our method shows excellent stability in
generating video frame sequences with high 3D consis-
tency, and can effectively predict the plausible appearance
details of previously unseen regions. In addition, Figure 12

demonstrates the view interpolation ability of our video
generation model using sparse input views, and the perfor-
mance remains stable even when the input view angles dif-
fer greatly.

C.2. Basic Camera Trajectories
Our method demonstrates promising generalization abil-
ity in camera-controllable video generation, especially for
common motion patterns such as zoom-in, zoom-out, and
panning. As shown in Figure 10, our method can generate
stable videos with basic camera trajectories using a large-
scale training dataset that contains a diverse and complex
distribution of camera motion patterns. In addition, in Fig-
ure 11, we also show the control ability of our method for
different motion amplitudes.

C.3. Single View Exploration Results
Figure 13 illustrates that scene reconstruction from sparse
input views often suffers from severe occlusions and geo-
metric gaps due to limited observation angles. By imple-
menting a multi-view observation strategy using video dif-
fusion models, we can progressively fill in these missing
regions, thereby enhancing the reconstruction’s complete-
ness and geometric detail. As we continuously increase and
synthesize observation perspectives, the scene’s geometric
structure becomes more complete, significantly improving
the quality and accuracy of the 3D reconstruction. In Fig-
ure 11, we show that by controlling the camera parameters,
we can directly control the magnitude of the movement,
which is general in different scenarios.

C.4. More 3D Reconstruction Results
Figure 16 presents additional reconstruction and render-
ing results based on generated video frames, demonstrat-
ing that our method effectively achieves high-quality recon-
structions in indoor, outdoor, and object-centered scenes.

D. Limitations
Our method encounters several challenges in video gener-
ation and scene reconstruction. First, existing video dif-
fusion models suffer from significant inference efficiency
bottlenecks, particularly when processing large-scale scene
reconstruction tasks requiring numerous video frames, lead-
ing to prohibitively high computational costs. Second, cur-
rent video diffusion models are constrained in the number
of generated video frames, which impedes comprehensive
scene reconstruction for complex scenarios. Lastly, the lack
of effective user interaction mechanisms represents a sub-
stantial limitation, as users cannot exert fine-grained con-
trol over the generation process and results, restricting the
model’s adaptability in practical applications.
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Figure 10. Visualization of our method for generating videos with basic motion trajectories.
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Figure 11. Visualization of our method for controlling different motion amplitudes.
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Figure 12. More Visualization of interpolated video based on sparse view input.
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Figure 13. Visualization of exploration and reconstruction based on single-view input.
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Figure 14. More video generation results with high 3D consistency based on single-view input.

Reference Generated Consistent Frames

Figure 15. Consistent frames generated by our approach. Our method demonstrates strong generalization capability across diverse sce-
narios, including the DL3DV [32], Tanks-and-Temples benchmark [27], and synthetic images from generative models, while maintaining
geometric coherence and structural fidelity.
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Figure 16. More video generation and reconstruction results with high 3D consistency based on single-view input.


