
StableCodec: Taming One-Step Diffusion for Extreme Image Compression

Supplementary Material

A. Inference for Arbitrary Resolution
Diffusion models typically face scalability issues when
dealing with high-resolution images, often yielding infe-
rior results while incurring significantly increased computa-
tional costs. Consequently, existing diffusion-based codecs
[3, 13, 16] primarily target small images with resolutions
around 512×512 or resized images. To enhance the practi-
cality of StableCodec, we adopt a tiled VAE approach [1]
to split high-resolution images into tiles and process them
sequentially in both the VAE encoder and decoder. For
one-step denoising, we employ a similar latent aggregation
strategy [9, 22], which processes latent patches individu-
ally and aggregates overlapping pixels using a Gaussian
weight map. These methods enable StableCodec to sup-
port arbitrary-resolution inference with memory consump-
tion under 9 GB, greatly improving its efficiency and prac-
ticality for real-world deployment.

However, we observe that StableCodec sometimes pro-
duces color shifts when reconstructing high-resolution im-
ages, as illustrated in Fig. 8. This issue has also been noted
in [4, 22]. To address this, we apply a quantized version of
adaptive instance normalization [22] on the reconstructed
high-resolution image x̂, aligning its mean (µx̂) and vari-
ance (σx̂) with those of the original image (µx and σx):

x̂c =
x̂− µx̂

σx̂
· σ̂x + µ̂x (9)

where µ̂x and σ̂x are 16-bit-quantized from µx and σx:

µ̂x =
⌊µx · (216 − 1) + 2−1⌋

216 − 1
(10)

σ̂x =
⌊σx · (216 − 1) + 2−1⌋

216 − 1
(11)

Here, x̂c represents the color-corrected reconstruction, and
µx and σx contain the mean and variance values for the
RGB channels, each represented as 32-bit floating point val-
ues. We find that quantizing these values to 16 bits does not
significantly affect correction performance. This strategy
effectively refines the color of high-resolution reconstruc-
tions with only a minimal increase in bit cost (96 bits per
image), as demonstrated in Fig. 8.

B. Network Structure
We present our entropy model in Fig. 9, with the detailed
network architecture shown in Fig. 10. Given the quan-
tized latent ŷ, the entropy model estimates its distribution
for arithmetic coding. Following [19], our entropy model is

0.02295 bpp

0.02360 bpp

0.02492 bpp

0.02298 bpp

0.02495 bpp

0.02363 bpp

Original w/o color fix w. 16-bit color fix

Figure 8. Visual examples of color fix from CLIC 2020 [21]. 16-
bit color fix brings clear refinement with negligible bits increase.

built with a hyperprior module and an autoregressive con-
text model, where we first obtain and transmit a hyperprior
Φhyper from y using the hyper transform ha and hs:

z = ha(y), ẑ = Q(z),Φhyper = hs(ẑ) (12)

Here, y has 320 channels with 64× (a spatial compression
ratio of 64), while z and ẑ have 160 channels with 256×.
To balance the coding performance and efficiency, we con-
struct a 4-step autoregressive process using quadtree parti-
tion [14] and latent residual prediction [18]. The detailed
autoregressive process to estimate the Gaussian parameters,
µ and σ, for ŷ is illustrated in Fig. 9. Following this, arith-
metic coding is applied to encode ŷ into a bitstream, or de-
code ŷ from the bitstream. For efficient network construc-
tion, we primarily rely on modified versions of Inception-
NeXt [24] and GatedCNN [23], as detailed in Fig. 10.

C. Runtime Analysis
We conduct detailed runtime analysis of different modules
in StableCodec using a single RTX 3090 GPU, and dis-
play the results in Table 6. Specifically, we examine the
time consumption of the VAE encoder ESD, auxiliary en-
coder EAux, ga and entropy encoding during the encoding



Context Model

(Shared)

Adapter
Φℎ𝑦𝑝𝑒𝑟

ො𝑦<2

Adapter
Φℎ𝑦𝑝𝑒𝑟

ො𝑦<3

Adapter
Φℎ𝑦𝑝𝑒𝑟

ො𝑦<4

Adapter
Φℎ𝑦𝑝𝑒𝑟

0
Step 1.

Step 2.

Step 3.

Step 4.

ℎa ℎ𝑠01

𝑧 Ƹ𝑧

Φℎ𝑦𝑝𝑒𝑟

𝑄

𝑔a 𝑔𝑠01𝑄
𝑦 ො𝑦 ො𝑦

Context

Model
Entropy Model

Deep Compression Latent Codec Autoregressive Process

𝜇, 𝜎

Adapter
𝜇4, 𝜎4

ො𝑦4

Φℎ𝑦𝑝𝑒𝑟ො𝑦<4

LRPAD

Adapter
𝜇3, 𝜎3

ො𝑦3

Φℎ𝑦𝑝𝑒𝑟ො𝑦<3

LRPAD

Adapter
𝜇2, 𝜎2

ො𝑦2

Φℎ𝑦𝑝𝑒𝑟ො𝑦<2

LRPAD

Adapter
𝜇1, 𝜎1

ො𝑦1

Φℎ𝑦𝑝𝑒𝑟0

LRPAD

Figure 9. (Left) Illustration of the entropy model. We build our entropy model on the basis of [19], which consists of a pair of hyper
transforms, ha and hs, and a context model to perform entropy estimation for ŷ in an autoregressive manner. (Right) Illustration of the
4-step autoregressive process. We divide ŷ into 4 groups (ŷ1, ŷ2, ŷ3 and ŷ4) using quadtree partition [14]. For each ŷi, we estimate its
Gaussian parameters, µi and σi, with the hyperprior Φhyper and previously decoded groups ŷ<i. The parameter networks contain a shared
context model and private adapters. AD represents arithmetic decoding the bitstream of ŷi given corresponding Gaussian parameters, µi

and σi. Additionally, we incorporate latent residual prediction (LRP) [18] to alleviate the quantization error.

C
o

n
v

3
x

3

In
ce

p
ti

o
n

N
eX

t

G
at

ed
C

N
N

C
o

n
v

3
x

3

R
es

B
lo

ck

In
ce

p
ti

o
n

N
eX

t

G
at

ed
C

N
N

C
o

n
v

1
x

1

P
ix

el
S

h
u

ff
le

C
o

n
v

1
x

1

P
ix

el
S

h
u

ff
le

In
ce

p
ti

o
n

N
eX

t

G
at

ed
C

N
N

In
ce

p
ti

o
n

N
eX

t

G
at

ed
C

N
N

In
ce

p
ti

o
n

N
eX

t

G
at

ed
C

N
N

In
ce

p
ti

o
n

N
eX

t

G
at

ed
C

N
N

R
es

B
lo

ck

R
es

B
lo

ck

Hyper Analysis Transform ℎa Hyper Synthesis Transform ℎ𝑠 Context Model Latent Residual Prediction (LRP) Adapter

Conv1x1

Conv1x1

GELU

Split

DWConv3x3 DWConv11x1 DWConv1x11 Identity

Concat

LayerNorm

Conv1x1

Chunk

GELUDWConv3x3

Conv1x1

Conv1x1

GELU

Conv3x3

Conv1x1

GELU

DWConv5x5

Conv1x1

GELU

Conv3x3

Conv1x1

GELU

DWConv5x5

PixelShuffle PixelShuffle

UpSample

DownSample

GatedCNNInceptionNeXt

Conv1x1

GELU

Conv1x1

GELU

DWConv5x5 Conv1x1

ResBlock

Quadtree

Partition

ො𝑦

ො𝑦1

ො𝑦4

ො𝑦2

ො𝑦3
Context Model

(Shared)

Adapter
Φℎ𝑦𝑝𝑒𝑟

ො𝑦<2

Adapter
Φℎ𝑦𝑝𝑒𝑟

ො𝑦<3

Adapter
Φℎ𝑦𝑝𝑒𝑟

ො𝑦<4

Adapter
Φℎ𝑦𝑝𝑒𝑟

0
Adapter

𝜎1

𝜇1

AC

LRP

ො𝑦1

Adapter
𝜎2

𝜇2

AC

LRP

ො𝑦2

Adapter
𝜎3

𝜇3

AC

LRP

ො𝑦3

Adapter
𝜎4

𝜇4

AC

LRP

ො𝑦4

Step 1.

Step 2.

Step 3.

Step 4.

ℎa ℎ𝑠01

𝑧 Ƹ𝑧

Φℎ𝑦𝑝𝑒𝑟

𝑄

𝑔a 𝑔𝑠01𝑄
𝑦 ො𝑦 ො𝑦

Context

Model
Entropy Model

Deep Compression Latent Codec Autoregressive Process

𝜇, 𝜎

Figure 10. Module structures and network details.

Table 6. Runtime analysis of specific modules in seconds averaged on Kodak [6]. ESD and DSD represent the VAE encoder and decoder
of SD-Turbo, while EE and ED denote entropy encoding and decoding with the entropy model. We add representative neural codec ELIC
[7] for comparison, which only contains the analysis transform ga, the synthesis transform gs and the entropy model.

Method Encoding Time (s) Decoding Time (s)
ESD EAux ga EE ED gs DAux ϵSD DSD

StableCodec (Ours) 0.108 0.014 0.005 0.029 0.041 0.004 0.004 0.112 0.161
ELIC [7] - - 0.015 0.138 0.230 0.016 - - -

process, and those of the entropy decoding, gs, auxiliary de-
coder DAux, one-step denoising Unet ϵSD and VAE decoder
DSD during the decoding process. For comparison, we add
the representative VAE-based neural codec ELIC [7], which
only contains ga, gs and the entropy model.

Since we use the analysis transform ga of a pre-trained
ELIC model to serve as EAux, the time consumption of “Sta-
bleCodec - EAux” is close to that of “ELIC - ga”. Besides,
the time consumption of ga, gs and entropy coding in Sta-
bleCodec is much smaller than those of ELIC. This is be-



0 0.005 0.010 0.015 0.020 0.025 0.030 0.035
bpp

10

15

20

25

30

PS
N

R

CLIC 2020

0 0.005 0.010 0.015 0.020 0.025 0.030 0.035
bpp

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
S-

SS
IM

CLIC 2020

0 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
bpp

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

PS
N

R

DIV2K

0 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
bpp

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
S-

SS
IM

DIV2K

H.266/VVC (VTM-23.0)
MS-ILLM (ICML2023)
EGIC (ECCV2024)

ELIC (CVPR2022)
GLC (CVPR2024)
TACO (ICML2024)

HiFiC (NeurlPS2020)
PerCo (ICLR2024)
StableCodec (Ours)

Text+Sketch (ICML2023W)
DiffEIC (TCSVT2024)

Figure 11. Additional rate-distortion curves on CLIC 2020 [21] and DIV2K [2] in terms of PSNR and MS-SSIM.

Table 7. Top-1 user preference. We evaluate reconstructions from different methods at similar ultra-low bitrates using the Kodak dataset
[6]. Our study involves 30 participants, yielding a total of 720 evaluated cases. In each case, we display the ground-truth image alongside
eight reconstructions from different methods, and invite participates to select the most “consistent” one compared with the ground-truth.

Method HiFiC MS-ILLM Text+Sketch PerCo DiffEIC EGIC TACO StableCodec (Ours)
Bitrate (bpp) 0.0268 0.0262 0.0274 0.0321 0.0375 0.0247 0.0258 0.0250
Top-1 Votes 20 26 11 24 43 29 54 513
Percentage 2.78% 3.61% 1.53% 3.33% 5.97% 4.03% 7.50% 71.25%

cause StableCodec adopts Deep Compression Latent Codec
with advanced 4-step autoregressive entropy model and net-
work designs, performing efficient transform coding at 16×
and entropy estimation at 64×, while ELIC performs trans-
form coding on original images and entropy estimation at
16×. Benefit from these designs, StableCodec is able to
achieve comparable coding speed with mainstream neural
codecs, significantly outperforms existing diffusion-based
methods as suggested in Table 2.

D. User Study
To provide a more comprehensive evaluation of reconstruc-
tion quality at ultra-low bitrates, we conduct a user study
on the Kodak dataset [6] using a top-1 user preference ap-
proach. We compare StableCodec against seven representa-
tive generative image codecs: HiFiC [17], MS-ILLM [20],
Text+Sketch [13], PerCo [3], DiffEIC [16], EGIC [10], and
TACO [12], all evaluated at similar average bitrates. To
produce the reconstructions, we use the official weights of
Text+Sketch, PerCo (SD) [11] and DiffEIC, while HiFiC,
MS-ILLM, EGIC and TACO are either re-trained or fine-
tuned from existing weights to reach specific bitrates.

Each participant in our study examines 24 cases, requir-
ing an average of three minutes to complete. For each case,
we present a ground-truth image alongside eight reconstruc-
tions from different methods, displayed in 2 rows and 4
columns with random order. Participants are asked to se-
lect the reconstruction they find most “consistent” with the
ground-truth image. A total of 30 participants completed
the study, yielding 720 evaluated cases. The results, sum-

marized in Table 7, show that StableCodec reconstructions
were preferred in over 70% of cases, demonstrating its su-
perior visual consistency as perceived by human observers.

E. Visual Performance

In this section, we display more visual examples and com-
parisons on high-quality images from DIV2K [2] (Fig. 12),
CLIC 2020 [21] (Fig. 13) and USTC-TD [15] (Fig. 14 and
Fig. 15). We compare the proposed StableCodec with ex-
isting methods, including ELIC [7], MS-ILLM [20], PerCo
[3], EGIC [10], DiffEIC [16], and TACO [12], all at ultra-
low bitrates. Notably, StableCodec outperforms the com-
peting methods in terms of both semantic consistency and
textual realism, while consuming fewer bits.

F. Quantitative Results

In Fig. 11, we provide additional PSNR and MS-SSIM
comparisons on CLIC 2020 and DIV2K as a supplement
for Fig. 6. As discussed in Section 4.1, pixel-level met-
rics like PSNR, MS-SSIM, and LPIPS have notable limita-
tions [3, 5, 8, 13] due to their emphasis on pixel accuracy
rather than semantic consistency or textual realism, making
them less suitable for evaluating ultra-low bitrate compres-
sion. Therefore, for StableCodec, we primarily focus on
FID, KID, and DISTS, which offer a more accurate assess-
ment of quality in severely compressed images.



Original

StableCodec

0.0152 bpp

Original Original

StableCodec

0.0152 bpp

StableCodec

0.0152 bpp

MS-ILLM

0.0381 bpp

ELIC

0.0439 bpp

EGIC

0.0455 bpp

TACO

0.0427 bpp

PerCo

0.0331 bpp

DiffEIC

0.0167 bpp

OriginalStableCodec

0.0152 bpp

Original Original

StableCodec

0.0152 bpp

StableCodec

0.0152 bpp

MS-ILLM

0.0347 bpp

ELIC

0.0409 bpp

EGIC

0.0417 bpp

TACO

0.0336 bpp

PerCo

0.0332 bpp

DiffEIC

0.0234 bpp

Figure 12. Visual examples and comparisons on 2K-resolution images from DIV2K.

References
[1] Tiled diffusion & vae extension. https://github.

com/pkuliyi2015/multidiffusion-upscaler-
for-automatic1111, 2023. Accessed: 2024-08-27. 1

[2] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge
on single image super-resolution: Dataset and study. In Pro-

ceedings of the IEEE conference on computer vision and pat-
tern recognition workshops, pages 126–135, 2017. 3

[3] Marlene Careil, Matthew J Muckley, Jakob Verbeek, and
Stéphane Lathuilière. Towards image compression with per-
fect realism at ultra-low bitrates. In The Twelfth International
Conference on Learning Representations, 2023. 1, 3

[4] Jooyoung Choi, Jungbeom Lee, Chaehun Shin, Sungwon

https://github.com/pkuliyi2015/multidiffusion-upscaler-for-automatic1111
https://github.com/pkuliyi2015/multidiffusion-upscaler-for-automatic1111
https://github.com/pkuliyi2015/multidiffusion-upscaler-for-automatic1111


Original

StableCodec

0.0193 bpp

StableCodec

0.0193 bpp

StableCodec

0.0193 bpp

Original Original

MS-ILLM

0.0310 bpp

ELIC

0.0455 bpp

EGIC

0.0422 bpp

TACO

0.0370 bpp

PerCo

0.0321 bpp

DiffEIC

0.0160 bpp

Original

StableCodec

0.0150 bpp

StableCodec

0.0150 bpp

StableCodec

0.0150 bpp

Original Original

MS-ILLM

0.0478 bpp

ELIC

0.0224 bpp

EGIC

0.0353 bpp

TACO

0.0205 bpp

PerCo

0.0322 bpp

DiffEIC

0.0211 bpp

Figure 13. Visual examples and comparisons on 2K-resolution images from CLIC 2020.

Kim, Hyunwoo Kim, and Sungroh Yoon. Perception pri-
oritized training of diffusion models. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11472–11481, 2022. 1



Original StableCodec

0.0053 bpp

Original PerCo

0.0326 bpp

DiffEIC

0.0206 bpp

MS-ILLM

0.0383 bpp

TACO

0.0178 bpp

StableCodec

0.0127 bpp

EGIC

0.0217 bpp

Figure 14. Visual examples and comparisons on 4K-resolution images from USTC-TD [15].

[5] Keyan Ding, Kede Ma, Shiqi Wang, and Eero P Simoncelli.
Image quality assessment: Unifying structure and texture
similarity. IEEE transactions on pattern analysis and ma-
chine intelligence, 44(5):2567–2581, 2020. 3

[6] Rich Franzen. Kodak lossless true color image suite (pho-
tocd pcd0992). http://r0k.us/graphics/kodak/,
1993. 2, 3

[7] Dailan He, Ziming Yang, Weikun Peng, Rui Ma, Hongwei
Qin, and Yan Wang. Elic: Efficient learned image compres-
sion with unevenly grouped space-channel contextual adap-
tive coding. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5718–
5727, 2022. 2, 3

[8] Zhaoyang Jia, Jiahao Li, Bin Li, Houqiang Li, and Yan Lu.

Generative latent coding for ultra-low bitrate image com-
pression. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 26088–
26098, 2024. 3

[9] Álvaro Barbero Jiménez. Mixture of diffusers for scene
composition and high resolution image generation. arXiv
preprint arXiv:2302.02412, 2023. 1

[10] Nikolai Körber, Eduard Kromer, Andreas Siebert, Sascha
Hauke, Daniel Mueller-Gritschneder, and Björn Schuller.
Egic: enhanced low-bit-rate generative image compression
guided by semantic segmentation. In European Conference
on Computer Vision, pages 202–220. Springer, 2024. 3

[11] Nikolai Körber, Eduard Kromer, Andreas Siebert, Sascha
Hauke, Daniel Mueller-Gritschneder, and Björn Schuller.

http://r0k.us/graphics/kodak/


Original

StableCodec

0.0052 bpp

Original PerCo

0.0322 bpp

DiffEIC

0.0184 bpp

MS-ILLM

0.0305 bpp

TACO

0.0169 bpp

StableCodec

0.0121 bpp

EGIC

0.0182 bpp

Figure 15. Visual examples and comparisons on 4K-resolution images from USTC-TD [15].

Perco (sd): Open perceptual compression. arXiv preprint
arXiv:2409.20255, 2024. 3

[12] Hagyeong Lee, Minkyu Kim, Jun-Hyuk Kim, Seungeon
Kim, Dokwan Oh, and Jaeho Lee. Neural image compres-
sion with text-guided encoding for both pixel-level and per-
ceptual fidelity. arXiv preprint arXiv:2403.02944, 2024. 3

[13] Eric Lei, Yiğit Berkay Uslu, Hamed Hassani, and
Shirin Saeedi Bidokhti. Text+ sketch: Image compression
at ultra low rates. arXiv preprint arXiv:2307.01944, 2023. 1,
3

[14] Jiahao Li, Bin Li, and Yan Lu. Neural video compression
with diverse contexts. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
22616–22626, 2023. 1, 2

[15] Zhuoyuan Li, Junqi Liao, Chuanbo Tang, Haotian Zhang,
Yuqi Li, Yifan Bian, Xihua Sheng, Xinmin Feng, Yao Li,
Changsheng Gao, et al. Ustc-td: A test dataset and bench-
mark for image and video coding in 2020s. arXiv preprint
arXiv:2409.08481, 2024. 3, 6, 7

[16] Zhiyuan Li, Yanhui Zhou, Hao Wei, Chenyang Ge, and Jing-
wen Jiang. Towards extreme image compression with latent
feature guidance and diffusion prior. IEEE Transactions on
Circuits and Systems for Video Technology, 2024. 1, 3

[17] Fabian Mentzer, George D Toderici, Michael Tschannen, and
Eirikur Agustsson. High-fidelity generative image compres-
sion. Advances in Neural Information Processing Systems,
33:11913–11924, 2020. 3

[18] David Minnen and Saurabh Singh. Channel-wise autoregres-



sive entropy models for learned image compression. In 2020
IEEE International Conference on Image Processing (ICIP),
pages 3339–3343. IEEE, 2020. 1, 2

[19] David Minnen, Johannes Ballé, and George D Toderici.
Joint autoregressive and hierarchical priors for learned im-
age compression. Advances in neural information processing
systems, 31, 2018. 1, 2

[20] Matthew J Muckley, Alaaeldin El-Nouby, Karen Ullrich,
Hervé Jégou, and Jakob Verbeek. Improving statistical fi-
delity for neural image compression with implicit local like-
lihood models. In International Conference on Machine
Learning, pages 25426–25443. PMLR, 2023. 3

[21] George Toderici, Lucas Theis, Nick Johnston, Eirikur
Agustsson, Fabian Mentzer, Johannes Ballé, Wenzhe Shi,
and Radu Timofte. Clic 2020: Challenge on learned image
compression, 2020, 2020. 1, 3

[22] Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin CK
Chan, and Chen Change Loy. Exploiting diffusion prior for
real-world image super-resolution. International Journal of
Computer Vision, pages 1–21, 2024. 1

[23] Weihao Yu and Xinchao Wang. Mambaout: Do we really
need mamba for vision? arXiv preprint arXiv:2405.07992,
2024. 1

[24] Weihao Yu, Pan Zhou, Shuicheng Yan, and Xinchao Wang.
Inceptionnext: When inception meets convnext. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5672–5683, 2024. 1


	Inference for Arbitrary Resolution
	Network Structure
	Runtime Analysis
	User Study
	Visual Performance
	Quantitative Results

