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Supplementary Material

A. Inference for Arbitrary Resolution
Diffusion models typically face scalability issues when
dealing with high-resolution images, often yielding infe-
rior results while incurring significantly increased computa-
tional costs. Consequently, existing diffusion-based codecs
[3, 13, 16] primarily target small images with resolutions
around 512×512 or resized images. To enhance the practi-
cality of StableCodec, we adopt a tiled VAE approach [1]
to split high-resolution images into tiles and process them
sequentially in both the VAE encoder and decoder. For
one-step denoising, we employ a similar latent aggregation
strategy [9, 22], which processes latent patches individu-
ally and aggregates overlapping pixels using a Gaussian
weight map. These methods enable StableCodec to sup-
port arbitrary-resolution inference with memory consump-
tion under 9 GB, greatly improving its efficiency and prac-
ticality for real-world deployment.

However, we observe that StableCodec sometimes pro-
duces color shifts when reconstructing high-resolution im-
ages, as illustrated in Fig. 8. This issue has also been noted
in [4, 22]. To address this, we apply a quantized version of
adaptive instance normalization [22] on the reconstructed
high-resolution image x̂, aligning its mean (µx̂) and vari-
ance (σx̂) with those of the original image (µx and σx):

x̂c =
x̂− µx̂

σx̂
· σ̂x + µ̂x (9)

where µ̂x and σ̂x are 16-bit-quantized from µx and σx:

µ̂x =
⌊µx · (216 − 1) + 2−1⌋

216 − 1
(10)

σ̂x =
⌊σx · (216 − 1) + 2−1⌋

216 − 1
(11)

Here, x̂c represents the color-corrected reconstruction, and
µx and σx contain the mean and variance values for the
RGB channels, each represented as 32-bit floating point val-
ues. We find that quantizing these values to 16 bits does not
significantly affect correction performance. This strategy
effectively refines the color of high-resolution reconstruc-
tions with only a minimal increase in bit cost (96 bits per
image), as demonstrated in Fig. 8.

B. Network Structure
We present our entropy model in Fig. 9, with the detailed
network architecture shown in Fig. 10. Given the quan-
tized latent ŷ, the entropy model estimates its distribution
for arithmetic coding. Following [19], our entropy model is
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Figure 8. Visual examples of color fix from CLIC 2020 [21]. 16-
bit color fix brings clear refinement with negligible bits increase.

built with a hyperprior module and an autoregressive con-
text model, where we first obtain and transmit a hyperprior
Φhyper from y using the hyper transform ha and hs:

z = ha(y), ẑ = Q(z),Φhyper = hs(ẑ) (12)

Here, y has 320 channels with 64× (a spatial compression
ratio of 64), while z and ẑ have 160 channels with 256×.
To balance the coding performance and efficiency, we con-
struct a 4-step autoregressive process using quadtree parti-
tion [14] and latent residual prediction [18]. The detailed
autoregressive process to estimate the Gaussian parameters,
µ and σ, for ŷ is illustrated in Fig. 9. Following this, arith-
metic coding is applied to encode ŷ into a bitstream, or de-
code ŷ from the bitstream. For efficient network construc-
tion, we primarily rely on modified versions of Inception-
NeXt [24] and GatedCNN [23], as detailed in Fig. 10.

C. Runtime Analysis
We conduct detailed runtime analysis of different modules
in StableCodec using a single RTX 3090 GPU, and dis-
play the results in Table 6. Specifically, we examine the
time consumption of the VAE encoder ESD, auxiliary en-
coder EAux, ga and entropy encoding during the encoding
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Figure 9. (Left) Illustration of the entropy model. We build our entropy model on the basis of [19], which consists of a pair of hyper
transforms, ha and hs, and a context model to perform entropy estimation for ŷ in an autoregressive manner. (Right) Illustration of the
4-step autoregressive process. We divide ŷ into 4 groups (ŷ1, ŷ2, ŷ3 and ŷ4) using quadtree partition [14]. For each ŷi, we estimate its
Gaussian parameters, µi and σi, with the hyperprior Φhyper and previously decoded groups ŷ<i. The parameter networks contain a shared
context model and private adapters. AD represents arithmetic decoding the bitstream of ŷi given corresponding Gaussian parameters, µi

and σi. Additionally, we incorporate latent residual prediction (LRP) [18] to alleviate the quantization error.
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Figure 10. Module structures and network details.

Table 6. Runtime analysis of specific modules in seconds averaged on Kodak [6]. ESD and DSD represent the VAE encoder and decoder
of SD-Turbo, while EE and ED denote entropy encoding and decoding with the entropy model. We add representative neural codec ELIC
[7] for comparison, which only contains the analysis transform ga, the synthesis transform gs and the entropy model.

Method Encoding Time (s) Decoding Time (s)
ESD EAux ga EE ED gs DAux ϵSD DSD

StableCodec (Ours) 0.108 0.014 0.005 0.029 0.041 0.004 0.004 0.112 0.161
ELIC [7] - - 0.015 0.138 0.230 0.016 - - -

process, and those of the entropy decoding, gs, auxiliary de-
coder DAux, one-step denoising Unet ϵSD and VAE decoder
DSD during the decoding process. For comparison, we add
the representative VAE-based neural codec ELIC [7], which
only contains ga, gs and the entropy model.

Since we use the analysis transform ga of a pre-trained
ELIC model to serve as EAux, the time consumption of “Sta-
bleCodec - EAux” is close to that of “ELIC - ga”. Besides,
the time consumption of ga, gs and entropy coding in Sta-
bleCodec is much smaller than those of ELIC. This is be-
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Figure 11. Additional rate-distortion curves on CLIC 2020 [21] and DIV2K [2] in terms of PSNR and MS-SSIM.

Table 7. Top-1 user preference. We evaluate reconstructions from different methods at similar ultra-low bitrates using the Kodak dataset
[6]. Our study involves 30 participants, yielding a total of 720 evaluated cases. In each case, we display the ground-truth image alongside
eight reconstructions from different methods, and invite participates to select the most “consistent” one compared with the ground-truth.

Method HiFiC MS-ILLM Text+Sketch PerCo DiffEIC EGIC TACO StableCodec (Ours)
Bitrate (bpp) 0.0268 0.0262 0.0274 0.0321 0.0375 0.0247 0.0258 0.0250
Top-1 Votes 20 26 11 24 43 29 54 513
Percentage 2.78% 3.61% 1.53% 3.33% 5.97% 4.03% 7.50% 71.25%

cause StableCodec adopts Deep Compression Latent Codec
with advanced 4-step autoregressive entropy model and net-
work designs, performing efficient transform coding at 16×
and entropy estimation at 64×, while ELIC performs trans-
form coding on original images and entropy estimation at
16×. Benefit from these designs, StableCodec is able to
achieve comparable coding speed with mainstream neural
codecs, significantly outperforms existing diffusion-based
methods as suggested in Table 2.

D. User Study
To provide a more comprehensive evaluation of reconstruc-
tion quality at ultra-low bitrates, we conduct a user study
on the Kodak dataset [6] using a top-1 user preference ap-
proach. We compare StableCodec against seven representa-
tive generative image codecs: HiFiC [17], MS-ILLM [20],
Text+Sketch [13], PerCo [3], DiffEIC [16], EGIC [10], and
TACO [12], all evaluated at similar average bitrates. To
produce the reconstructions, we use the official weights of
Text+Sketch, PerCo (SD) [11] and DiffEIC, while HiFiC,
MS-ILLM, EGIC and TACO are either re-trained or fine-
tuned from existing weights to reach specific bitrates.

Each participant in our study examines 24 cases, requir-
ing an average of three minutes to complete. For each case,
we present a ground-truth image alongside eight reconstruc-
tions from different methods, displayed in 2 rows and 4
columns with random order. Participants are asked to se-
lect the reconstruction they find most “consistent” with the
ground-truth image. A total of 30 participants completed
the study, yielding 720 evaluated cases. The results, sum-

marized in Table 7, show that StableCodec reconstructions
were preferred in over 70% of cases, demonstrating its su-
perior visual consistency as perceived by human observers.

E. Visual Performance

In this section, we display more visual examples and com-
parisons on high-quality images from DIV2K [2] (Fig. 12),
CLIC 2020 [21] (Fig. 13) and USTC-TD [15] (Fig. 14 and
Fig. 15). We compare the proposed StableCodec with ex-
isting methods, including ELIC [7], MS-ILLM [20], PerCo
[3], EGIC [10], DiffEIC [16], and TACO [12], all at ultra-
low bitrates. Notably, StableCodec outperforms the com-
peting methods in terms of both semantic consistency and
textual realism, while consuming fewer bits.

F. Quantitative Results

In Fig. 11, we provide additional PSNR and MS-SSIM
comparisons on CLIC 2020 and DIV2K as a supplement
for Fig. 6. As discussed in Section 4.1, pixel-level met-
rics like PSNR, MS-SSIM, and LPIPS have notable limita-
tions [3, 5, 8, 13] due to their emphasis on pixel accuracy
rather than semantic consistency or textual realism, making
them less suitable for evaluating ultra-low bitrate compres-
sion. Therefore, for StableCodec, we primarily focus on
FID, KID, and DISTS, which offer a more accurate assess-
ment of quality in severely compressed images.
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Figure 12. Visual examples and comparisons on 2K-resolution images from DIV2K.
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[9] Álvaro Barbero Jiménez. Mixture of diffusers for scene
composition and high resolution image generation. arXiv
preprint arXiv:2302.02412, 2023. 1

[10] Nikolai Körber, Eduard Kromer, Andreas Siebert, Sascha
Hauke, Daniel Mueller-Gritschneder, and Björn Schuller.
Egic: enhanced low-bit-rate generative image compression
guided by semantic segmentation. In European Conference
on Computer Vision, pages 202–220. Springer, 2024. 3

[11] Nikolai Körber, Eduard Kromer, Andreas Siebert, Sascha
Hauke, Daniel Mueller-Gritschneder, and Björn Schuller.

http://r0k.us/graphics/kodak/


Original

StableCodec

0.0052 bpp

Original PerCo

0.0322 bpp

DiffEIC

0.0184 bpp

MS-ILLM

0.0305 bpp

TACO

0.0169 bpp

StableCodec

0.0121 bpp

EGIC

0.0182 bpp

Figure 15. Visual examples and comparisons on 4K-resolution images from USTC-TD [15].

Perco (sd): Open perceptual compression. arXiv preprint
arXiv:2409.20255, 2024. 3

[12] Hagyeong Lee, Minkyu Kim, Jun-Hyuk Kim, Seungeon
Kim, Dokwan Oh, and Jaeho Lee. Neural image compres-
sion with text-guided encoding for both pixel-level and per-
ceptual fidelity. arXiv preprint arXiv:2403.02944, 2024. 3
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