Supplementary Materials

This supplementary material offers a detailed examination
of the methodologies and results that underpin the experi-
ments in our study. It is designed to provide comprehensive
information to validate the findings and ensure reproducibil-
ity and transparency.

The content is organized as follows:

* Section 6: A comprehensive and detailed description of
the experimental setup and methodology.

* Section 7: A formal presentation of the proposed algo-
rithm, including its pseudocode representation.

* Section 8: In-depth evaluation of model performance un-
der various transfer attack scenarios.

* Section 9: Detailed results from adversarial training us-
ing synthetic data for robustness assessment.

* Section 10: Extensive exploration of techniques for gen-
erating foreground-background attention maps.

* Section 11: Thorough examination of the model’s robust-
ness under varying levels of attack intensity.

6. Experimentation Details

In this part, we provide a comprehensive overview of the
experimental setup.

6.1. Training Setup

6.1.1. CIFAR-10 and CIFAR-100

For the CIFAR-10 and CIFAR-100 [9] datasets, we employ
the Stochastic Gradient Descent (SGD) optimizer with a
momentum of 0.9 and a weight decay factor of 5 x 1074,
The initial learning rate is set to 0.1, and models undergo
100 epochs of training with the learning rate reduced by a
factor of 0.1 at the 80th and 90th epochs.

For adversarial training on these datasets, we create ad-
versarial examples through a 10-iteration attack where the
maximum ¢,,-norm of the adversarial perturbation is lim-
ited to e = 8/255, using a step size of & = 2/255. To en-
sure reliability and fairness, we align the inverse adversarial
example generation process with the UIAT settings [5], em-
ploying the same loss function and perturbation constrained
by e = 4/255.

6.1.2. ImageNet-1K

For the ImageNet-1K dataset, we strictly follow the training
protocol established in [14] to ensure fair comparison with
existing methods. Specifically, we implement a 2-iteration
PGD over 50 epochs, and set ¢ = 4/255 and o = 1/255
for adversarial perturbations. This adherence to established
benchmarking parameters enables direct and meaningful
comparison with state-of-the-art approaches evaluated on
this challenging large-scale dataset.

6.1.3. Common Settings

The hyperparameters \; and A, are consistently set to 1.0
across all datasets. To maintain experimental fairness, all
comparative methods undergo identical training strategies
with the same number of epochs and optimizer configura-
tions. For Grad-CAM to quantify the spurious correlation
bias, we use a pre-trained ResNet-18 model under simple
training, introducing minimal additional training cost.

All experiments were conducted on a single NVIDIA
Tesla A100. Notably, our method does not employ label
smoothing techniques to avoid potential conflicts with ef-
forts to mitigate spurious correlation bias, as label smooth-
ing can blur class boundaries and undermine the precision
required for robust decision-making. Additionally, unlike
UIAT, our approach does not utilize momentum terms to
stabilize the generation process of inverse adversarial ex-
amples, instead focusing solely on the intrinsic properties
and underlying dynamics of our method. Comprehensive
training details are available in the supplementary material.

6.2. Evaluation Setup

Our evaluation consists of two main components: robust-
ness performance and robust generalization. To evaluate
robustness performance, we use PGD [12], C&W [2], and
AutoAttack (AA) [3] within the /..-norm. AutoAttack
includes several attack methods such as APGD-DLR [3],
APGD-CE [3], FAB [4], and Square [1]. Adversarial at-
tacks are generated using a step size of & = 2/255 and a
specified maximum /,.-norm. Note that “Clean” indicates
natural examples unaffected by adversarial perturbations.

To evaluate robust generalization, we introduce the con-
cept of the robust generalization gap [21] denoted as the
“Robust Gap” quantifying the difference in robust perfor-
mance between training and test sets under adversarial at-
tacks. A smaller robust gap indicates improved robust gen-
eralization, reflecting reduced vulnerability to robust over-
fitting in the adversarial training model.

7. Algorithm Details

Algorithm 1 outlines the complete workflow of our
proposed Debiased High-Confidence Adversarial Training
(DHAT) framework, which systematically mitigates spuri-
ous correlations in adversarial training through two primary
components: Debiased High-Confidence Logit Regulariza-
tion (DHLR) and Foreground Logit Orthogonal Enhance-
ment (FLOE).

To efficiently compute attention maps, we employ Grad-
CAM (Line 11) due to its computational efficiency. How-
ever, our framework is compatible with alternative saliency-
based methods, such as SAM [8], which can provide en-
hanced performance at a higher computational cost. The ex-
traction of background features (Lines 13-14) is performed



Algorithm 1 Debiased High-Confidence Adversarial Train-
ing (DHAT)

Require: Training dataset (X,Y) = {(z;,v:)}Y; Net-
work parameters 6; Perturbation budget €¢; Hyperpa-
rameters A1, Ao; Attention threshold w.

Ensure: Robust model parameters 6*

1: Initialize network parameters 6
2: for each epoch do
3:  for each mini-batch (z,y) do

4: /I Generate adversarial examples
5 & < argmax| |y ||, <c Lar(fo(z'),y)
6: Z«+ fo(2)
7: /I Generate inverse adversarial examples
8: T < arg min|| ||, <e Lrno(fo(2'), y)
9: Z <+ fo(&)
10 // Compute attention maps using a selected method
A € {Grad-CAM, Integrared-Grad, SAM, efc.}
11: M <+ A(x) {Different attention map computation
techniques }
12: /] Extract background features from inverse adver-
sarial examples
13 Bl ¢ Ton, <) Ta)
14: TZ’(B) — fg(:f:(B))
15: // Compute debiased high-confidence logits
16: ZF e 2 — Z(B)
17: // Compute DHLR loss
18: Lpurr < Lrr(#(27)]|o(2))
19: // Compute FLOE loss
20: EFLOE<**|2*;.(ZT)B‘)2‘Z(B)|Z>
21: // Compute total loss
22: Lpgar < Lar(Z,9)+ M -Lourr+ie-Lrror
23: /I Update network parameters
24: 0* «— 0 —VoLlpHar
25:  end for
26: end for

27: return 0*

using an adaptive threshold w, ensuring the identification of
non-discriminative regions that contribute to spurious corre-
lations. The overall training objective (Line 23) integrates
standard adversarial training with our proposed debiasing
regularization terms, weighted by A; and A,.

Despite incorporating additional minimal computational
steps, the DHAT framework introduces only a marginal in-
crease in resource consumption compared to standard ad-
versarial training while significantly enhancing model ro-
bustness. Crucially, DHAT achieves these improvements
without compromising clean-data accuracy, making it a
highly practical and scalable solution for real-world adver-
sarial defense applications.

8. Performance Under Transfer Attack

In this part, we evaluate our proposed model’s performance
under transfer attacks and compare it with the UIAT [5].
Transfer attacks evaluate a model’s robustness by testing its
performance against adversarial examples generated from
different source models, which simulate real-world condi-
tions where attackers may use varied strategies. This test-
ing is essential to ensure that a model’s adversarial defenses
generalize effectively beyond its training environment and
are robust against diverse attack methods. By evaluating
the performance under transfer attacks, we ensure that our
model is robust not only to attacks generated by its own ar-
chitecture but also to those from different models, providing
a more comprehensive measure of robustness.

Table 8 presents the robust accuracy of various mod-
els under transfer attacks with an ¢.,-norm perturbation of
e = 8. The table compares the performance of the UIAT
method with that of our proposed model across different
target models and transfer attack types.

8.1. Robustness Performance

Our model consistently outperforms UIAT across all trans-
fer adversarial attacks and target models. For example,
when the WRN28-10 model is trained with our proposed
DHAT and subjected to AA attacks generated from ResNet-
50, VGG16, and Inc-V3 source models, the defense suc-
cess rate improves by 1.21%, 1.14%, and 1.44% compared
to UIAT, respectively. This demonstrates the model’s ro-
bustness, highlighting its effectiveness not only in specific
attack scenarios but also across various model architectures.

8.2. Robustness Across Various Attack Types

Our proposed model DHAT demonstrates enhanced robust-
ness, particularly against more challenging attacks such as
PGD-50 and C&W. For instance, when using the ResNet-
18 as the source model, our method achieves improvements
of up to 1.88% and 2.39% under PGD-50 and C&W at-
tacks from WRN28-10, respectively, compared to UIAT.
This highlights the model’s superior capability to withstand
adversarial perturbations.

8.3. Generalization Across Various Source Models

Our model exhibits strong performance across a range
of source models, including VGG-16, WRN28-10, and
ResNet-18. This indicates that the improved robustness of
our model is not limited to specific attacks generated from
source architectures but generalizes effectively across dif-
ferent adversarial settings.

9. Performance with Generated Data

We employ Diffusion Denoising Probabilistic Models
(DDPM) [6] to generate an additional 50K samples for



Table 8. Transfer attack accuracy (%) in the single-model transfer scenario. The number in bold indicates the best accuracy.

| Performance of UIAT / DHAT

Attack (e = 8) Target: VGG-16 Target: WRN28-10 Target: ResNet-18
= ResNet-50 = Inc-V3 = WRN28-10 | = ResNet-50 = VGG16 = Inc-v3 | = WRN28-10 = VGGI6 = Inc-v3

FGSM 63.42/64.83  6344/64.51  63.73/64.88 | 77.1177873 78.08/79.27 77.84/78.69 | 73.01/74.80  74.00/75.03 72.43/73.18
PGD-10 53.09/54.46  52.81/53.96  54.17/5536 | 61.93/62.87 64.73/65.70 61.40/62.56 | 58.56/60.30  59.91/60.89 57.82/58.75
PGD-20 5273/5425 52.63/53.70  53.80/55.29 | 61.52/62.68 64.60/65.65 61.19/62.38 | 58.13/60.04  59.80/60.78 57.48/58.42
PGD-50 52.68/54.25 52.62/53.67  53.77/55.27 | 61.51/62.65 64.56/65.68 61.17/62.24 | 58.15/60.03  59.78/60.83 57.45/58.46
C&W 51.90/53.44  5138/52.61  5531/5635 | 61.05/6202 6332/64.40 60.76/61.98 | 57.73/60.12  57.44/58.74 57.71/59.25
AA 56.31/57.94  56.02/56.98  59.65/60.77 | 67.18/68.39 71.86/73.00 64.39/65.83 | 62.36/63.19  65.19/66.07 60.69/61.94

Table 9. Comparison of robustness (%) and robust generalization
gap (%) for models trained on generated data. The bolded num-
bers indicate the best performance.

Table 10. Comparison of robustness (%) and robust generalization
gap (%) for using various attention map generation techniques us-
ing WRN28-10 on the CIFAR-10.

CIFAR-10 ResNet-18 WRN28-10

Method Cleant AA?T Robust Gap] Cleant AA7T Robust Gapl
MART [17] 83.45 4945 291 84.26  51.95 8.73
AWP [20] 83.78  50.79 2.03 84.10  53.29 6.11
FSR [7] 83.19 50.53 2.35 83.88  53.03 7.05
CFA [19] 84.97 50.85 2.98 85.81 53.35 8.94
UIAT [5] 85.10  52.09 3.04 86.73  54.59 9.41
SGLR [10] 86.35 51.27 2.75 87.72  53.77 11.25
DHAT (Ours)  87.62 54.42 0.83 88.94 56.92 2.48
CIFAR-100 ResNet-18 WRN28-10

Method Cleant AA7T Robust Gap] Cleant AA?T Robust Gapl
MART [17] 5473 27.70 2.88 55.87  30.20 8.86
AWP [20] 57.55 29.33 2.37 59.71  31.83 7.13
FSR [7] 58.10 28.94 2.47 59.03 3044 7.40
CFA [19] 60.13  28.85 3.01 61.56  29.61 9.13
UIAT [5] 59.92 28.48 4.47 60.24  30.98 14.32
SGLR [10] 61.25 29.10 4.15 62.39  30.15 17.05
DHAT (Ours) 63.14 32.21 0.98 64.80 34.71 2.96

both CIFAR-10 and CIFAR-100 datasets following the [18].
This synthetic data is then used to augment the training of
both our method and all baseline models. The performance
comparisons, as shown in Table 9, illustrate the impact of
additional data on robustness and generalization.

9.1. Robustness Performance

The results in Table 9 demonstrate that our method outper-
forms baseline methods in terms of robustness when trained
with the additional synthetic data. This improvement high-
lights the effectiveness of our approach in leveraging extra
data to enhance model robustness, particularly under adver-
sarial conditions.

9.2. Generalization Performance

We observe that, compared to the results in Table 1, most
models trained with the additional data exhibit a reduced
Robust Gap, indicating improved generalization. However,
both UIAT and SGLR exhibit limited improvements in ro-
bust generalization. These methods rely on spurious corre-
lations during training, which hinders their generalization

Method CleanT PGD-101 C&W?T AA?T Robust Gapl
- 82.94 58.66 54.11 5217 7.92
Grad-CAM [13] 83.95 60.49 55.27  53.10 3.51
Integrated-Grad [15]  83.97 60.35 55.18  53.04 3.68
SOLO [16] 84.26 61.60 56.74  54.93 3.09
SAM [8] 85.65 62.44 58.10  56.38 2.46

performance even with the added data. Although UIAT and
SGLR benefit from enhanced robustness due to increased
data diversity, their robust generalization remains subopti-
mal, likely due to their dependence on non-essential fea-
tures. This finding underscores the unique advantage of our
method in achieving both robust accuracy and generaliza-
tion with enriched datasets.

10. Impact of Foreground-Background Recog-
nition Techniques

In this part, we investigate the influence of different atten-
tion map generation techniques on the performance of De-
biased High-Confidence Logit Regularization (DHAT), as
seen in Table 10. Our exploration extends beyond the ini-
tially employed Grad-CAM method to encompass a variety
of attention map generation approaches, thereby providing
a comprehensive analysis of their effects on model robust-
ness and generalization.

10.1. Exploration of Various Attention Map

The primary approach detailed in the main text utilizes
Grad-CAM [13], a widely adopted method in weakly su-
pervised object segmentation [11], to extract foreground
and background feature maps efficiently. Grad-CAM offers
a balance between computational efficiency and effective-
ness, making it suitable for large-scale evaluations. How-
ever, to understand the broader applicability and potential
improvements, we incorporated additional attention map
generation techniques, including Integrated Gradients [15],
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Figure 6. Comparisons with varying e values using ResNet-18 on the CIFAR-10. The z-axis represents the e value, while y-axis represents

the robust accuracy (%).

SOLO [16], and SAM [8].

10.2. Evaluation of Advanced Attention Map Mod-
els

Incorporating more sophisticated attention map generation
models, such as SAM, demonstrated enhanced robustness
and reduced robust generalization gaps compared to sim-
pler methods like Grad-CAM. These advanced models pro-
vide finer and more accurate segmentation of foreground
and background features, which in turn leads to better align-
ment of high-confidence logits under adversarial conditions.
However, this improvement in performance comes at the
cost of increased computational overhead. More complex
models require greater processing power and longer train-
ing times, which may be a limiting factor in resource-
constrained environments.

10.3. Trade-Off Between Performance and Compu-
tational Efficiency

While the adoption of advanced attention map techniques
can yield superior performance metrics, researchers must
consider the trade-offs involved. Enhanced models may
offer marginal gains in robustness and generalization, but
the additional computational resources and time required
may not always justify these benefits, especially in appli-
cations where real-time processing is essential. Therefore,
the choice of attention map generation technique should be
informed by the specific requirements and constraints of the
deployment scenario.

11. Robustness under Various Magnitude At-
tacks

In this part, we evaluate the robustness of our proposed
model under various levels of adversarial perturbations,
quantified by different € values. We compare our model

with two baseline methods, MART [17] and UIAT [5], and
the state-of-the-art SGLR method [10] across various attack
types, including FGSM, PGD-10, PGD-20, and C&W. We
aim to demonstrate the superior generalization and robust-
ness of our model under progressively challenging adver-
sarial conditions. Figure 6 shows the accuracy of different
methods under various € values for each attack type.

The comparative analysis of our model with MART,
UIAT, and SGLR reveals several key insights:

11.1. Robustness Across Various Attack Types

Our model consistently outperforms the baselines and
SGLR across all attack types and € values. This consistent
superiority underscores our model’s robust generalization
ability, allowing it to maintain high accuracy even under
more challenging adversarial attack conditions.

11.2. Generalization Against Various Attacks

The results suggest that the defensive mechanisms in our
model are highly effective in mitigating the impact of var-
ious adversarial attacks (i.e., FGSM, PGD-10, PGD-20,
C&W). This robustness is especially evident in scenarios
with stronger attacks and higher e values, where our model
shows superior performance compared to existing methods.

11.3. Practical Applicability

The enhanced robustness of our model across different e
values and attack types demonstrates its practical applica-
bility in real-world scenarios, where adversarial perturba-
tions can vary in strength and sophistication.
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