Supplementary Material

1. Comparisons to more peer methods

Apart from the self-reconstruction methods in the main pa-
per (including baseline Point-MAE [14] and others), there
are some other peer methods, including Point-FEMAE [22],
PCP-MAE [27], I2P-MAE [24], Joint-MAE [6], Cross-
BERT [11], and TAP [19]. Here, we discuss the rela-
tion of Point-PQAE with these approaches and compare
its performance against them to better position our work.
A brief comparison of peer methods with our Point-PQAE
can be seen in Tab. 1, and the performance of these meth-
ods on downstream tasks is reported in Tab. 2. Point-PQAE
achieves the best or comparable performance when com-
pared with them.

Relation to Point-FEMAE [22]. Connection. Both of
them are reconstruction-based methods. Differences. 1)
Pre-Training Efficiency. Point-FEMAE performs mask re-
construction in both the global and local branches and in-
troduces Local Enhancement Module (LEM) which con-
sists of some convolution layers and MLP layers to each
transformer block. To achieve local patch convolution with
coordinate-based nearest neighbors, when tokens are in-
put to LEM, it duplicates K nearest neighboring patches
(k = 20) for each input token and aggregates nearest infor-
mation for each token which brings an extra calculation bur-
den to each block in the encoder. Point-PQAE utilizes origi-
nal transformer blocks, making it more efficient during pre-
training. 2) Backbone. Point-FEMAE reserves the LEM
modules in the encoder for fine-tuning which means adding
convolution and MLP layers for each transformer block to
the backbone for fine-tuning, while our Point-PQAE uti-
lizes an encoder consisting of pure transformer blocks for
fine-tuning, which remains simple and is aligned to previ-
ous work.

Relation to PCP-MAE [27]. Connection. Both of them
are reconstruction-based methods. Differences. Targeted at
alleviating information leakage of centers in point cloud,
PCP-MAE proposes a new module called Predicting Cen-
ter Module (PCM) and a novel loss for better utility of cen-
ters based on Point-MAE, which is still a self-reconstruction
method. Our Point-PQAE differs from it as it is a pioneer-
ing cross-reconstruction method; it uses VRPE to perform
cross-view point cloud reconstruction, which overcomes the
limitations of self-reconstruction methods.

Relation to I2P-MAE [24]. Connection. Both of them
are reconstruction-based methods. Differences. 2P-MAE
heavily relies on strong pre-trained 2D models as a guide
to achieve multi-task cross-modal learning while our Point-
PQAE utilizes single-modal data without relying on any
pre-trained model. Besides, the utilization of 2D data in
I2P-MAE brings a heavy computation burden to the pre-
training process.

Relation to Joint-MAE [6]. Connection. Both of
them are reconstruction-based methods. Differences. Joint-
MAE utilizes a shared weight encoder but 3 different de-
coders for pre-training, and it’s a multi-task pre-training
method including 2D / 3D / 2D-3D reconstruction, which
makes it more computational while Point-PQAE utilizes
one encoder and one decoder only for per-training and
is a single task method which focuses on 3D data cross-
reconstruction.

Relation to Cross-BERT [11]. Connection. Both are
point cloud self-supervised methods. Differences. Cross-
BERT is a method that utilizes two isolated encoders for
cross-modal learning of point clouds and rendered images.
To prevent the collapse of its intra-/cross- modal contrastive
learning, it further uses another two momentum encoders
that perform EMA-update, which makes pre-training of
Cross-BERT much more complex than Point-PQAE. Addi-
tionally, Cross-BERT requires pre-training a dVAE as the
tokenizer and includes a mask cross-modal learning task
alongside contrastive learning. In contrast, Point-PQAE fo-
cuses solely on point clouds, utilizing a single encoder for
single-task self-supervised pre-training.

Relation to TAP [19]. Connection. Both are
reconstruction-based methods. Differences. TAP makes
cross-modal reconstruction, which renders images of point
clouds with different poses and after getting the latent rep-
resentation of the 3D point cloud, it uses the pose informa-
tion of the rendered images to query cross-modal informa-
tion from the latent representation by cross-attention. And
then using the queried information to rebuild the rendered
image. Point-PQAE uses view-relative position embed-
ding (VRPE) to make cross-view information interaction by
cross-attention to achieve cross-reconstruction which uses
3D data only. Extra online operation on rendering and pro-
cessing 2D data in TAP will raise the computational needs
compared to Point-PQAE.



Table 1. Methodology comparisons between our Point-PQAE and other peer methods. The “Extra” in the table means extra parts in
contrast to Point-MAE which adopts standard transformer blocks as backbone.

Single-/Cross- Pre-trained

Methods

Single-/Multi-

Extra Transformer Extra Modules

Modal Model Needed Task Blocks (Pre-training)  (Fine-tuning)
Point-MAE [14] Single X Single X X
Point-FEMAE [22] Single X Multi X v
PCP-MAE [27] Single X Multi X X
I2P-MAE [24] Cross v Multi X X
Joint-MAE [6] Cross X Multi v X
Cross-BERT [11] Cross v Multi v X
TAP [19] Cross X Single X X
Point-PQAE Single X Single X X

Table 2. Performance of peer methods. The classification results on ScanObjectNN and ModelNet40 and few-shot learning results on
ModelNet40 are reported by accuracy (%). We term OBJ_BG, OBJ_ONLY, PB_T50_RS as BG, QOY, RS respectively. We compare
methods using the e plain Transformer architectures, e.g. Point-MAE[14], Point-PQAE (ours), o hierarchical Transformer architectures

and o methods with extra modules during fine-tuning.

ScanObjectNN ModelNet40 ModelNet40 few-shot
Methods #P 5-way 10-way
BG Oy RS IKP 8KP 10-shot 20-shot 10-shot 20-shot

ePoint-MAE [14] 22.1 90.0 883 852 938 940 96.3£25 97.8£1.8 92.6+4.1 95.043.0
oPoint-FEMAE [22] 274 952 933 902 945 - 97.2+£1.9 98.6£1.3 94.0£3.3 958428
oPCP-MAE [27] 22.1 955 943 904 942 - 97.4+23 99.1+0.8 93.5£3.7 959427
oI2P-MAE [24] - 942 91.6 90.1 94.1 - 97.0£1.8 983+1.3 92.6+£5.0 95.5£3.0
oJoint-MAE [6] - 909 889 86.1 94.0 - 96.7£2.2 97.7£1.8 92.6£3.7 95.1£2.6
oCross-BERT [11] 22.1 937 921 89.0 942 944 97.0£2.1 982+13 93.04£34 95.643.0
oTAP [19] 221 904 895 857 - - 97.3+1.8 97.8+1.7 93.1£2.6 95.8£1.0
ePoint-PQAE 22.1 950 936 89.6 939 943 969+£3.0 99.0£1.0 94.0+4.0 96.1+2.8

2. Related cross-reconstruction works

Our Point-PQAE pioneers the cross-reconstruction
paradigm in 3D point cloud self-supervised learning
(SSL). There are two essential components in our pro-
posed cross-reconstruction framework: 1) Two iso-
lated/decoupled views, rather than two parts of the same
instance that maintain a fixed relative relationship. 2) A
model that achieves cross-view reconstruction using relative
position information. To our knowledge, there are no simi-
lar previous methods in this domain. To better position our
methodology, we compare it to similar SSL methods, in-
cluding SiamMAE [7] and CropMAE [4], proposed in the
image domain. SiamMAE operates on pairs of randomly
sampled video frames and asymmetrically masks them, uti-
lizing the past frame to predict the masked future frame.
CropMAE relies on image augmentations to generate two
views, using one to reconstruct the other.

Relation of SiamMAE and CropMAE to our Point-
PQAE: All are cross-reconstruction methods.  Both
SiamMAE and CropMAE have two essential components
for cross-reconstruction-framework including two-view
(different frames sampled from one video for SiamMAE

and isolated augmented images for CropMAE) and cross-
view reconstruction model. They can be treated as cross-
reconstruction methods, similar to our Point-PQAE.

Difference of SiamMAE and CropMAE to our Point-
PQAE: 1) Different domain: SiamMAE and CropMAE
focus on the 2D SSL domain. Our Point-PQAE is the first
method for cross-reconstruction in the 3D SSL domain. 2)
Asymmetric/symmetric reconstruction: SiamMAE uses
the past to predict the future, which is asymmetric. Crop-
MAE performs asymmetric reconstruction and doesn’t ex-
plore siamese cross-reconstruction. In contrast, our Point-
PQAE is inherently symmetric, and the siamese loss brings
a performance gain. 3) No relative information utilized:
SiamMAE and CropMAE do not incorporate relative infor-
mation into training but rely on non-fully masking to guide
the cross-reconstruction. The VRPE adopted by our Point-
PQAE provides explicit guidance, making training more
stable and improving explainability. 4) No tuned-needed
mask ratio exists in our framework. There is a hyperpa-
rameter mask ratio that needs to be tuned in both SiamMAE
and CropMAE, but this is not the case in our Point-PQAE
framework.



Relation and differences between Joint-MAE [6] and
PiMAE [2]. We discuss the differences between our frame-
work and two seemingly similar methods in the point cloud
domain: Joint-MAE [6] and PIMAE [2]. Joint-MAE and Pi-
MAE adopt a similar strategy, utilizing paired point clouds
and images to perform cross-modal masked autoencoding.
Our framework, however, differs significantly from these
two methods.

The relation of these methods to our Point-PQAE is that
all three are self-supervised approaches that focus on the
point cloud domain.

Differences:

1) Different motivations: Joint-MAE and PIMAE aim
to explore the semantic correlation between 2D and 3D
data by performing 3D-2D interactions and achieving cross-
modal self-reconstruction through cross-modal knowledge.
In contrast, inspired by the success of two-view pre-
training paradigms, we propose Point-PQAE, the first cross-
reconstruction framework for point cloud self-supervised
learning (SSL).

2) Different modalities: Both Joint-MAE and PIMAE
rely on paired image-point cloud data, making them cross-
modal methods. Our Point-PQAE, on the other hand, only
consumes unlabeled point cloud data, making it more easily
extendable. Additionally, incorporating image data could
increase computational requirements.

3) Joint-MAE and PiMAE cannot be called cross-
reconstruction methods, unlike our Point-PQAE, be-
cause:

e Recall that cross-reconstruction methods require two
components: decoupled views and a cross-reconstruction
framework. In cross-reconstruction, decoupled views
are obtained through independent augmentations, achiev-
ing significant diversity between views, and the cross-
reconstruction framework relies on information from
view 1 to mandatorily reconstruct view 2.

* The paired 3D and 2D views used by Joint-MAE and Pi-
MAE cannot be considered isolated or decoupled views.
Take PIMAE as an example: the image is merely a ren-
der from a specific camera pose of the point cloud. No
augmentations can be applied to either of these views (as
discussed in Section 4 of the PIMAE paper), so diversity
between views cannot be achieved.

* Cross-view knowledge is used as auxiliary, not manda-
tory, in these two methods. If either the 3D or 2D data is
removed, reconstruction can still be achieved, which turns
into the case in MAE [9] or Point-MAE [14]. However, a
cross-reconstruction framework should mandatorily rely
on view 1 to reconstruct view 2, as in our Point-PQAE,
SiamMAE [7], and CropMAE [4]. For instance, in Joint-
MAE, 3D information is used as auxiliary for 2D MAE
(or vice versa), and a cross-reconstruction loss (specifi-
cally, cross-modal reconstruction loss) is added to the 2D-

3D output.

Thus, it is more appropriate to refer to these methods as
cross-modality self-reconstruction methods.

3. Discussion on the view-relative positional
embedding and positional query

Relative Positional Embedding (RPE) methods. To better
position the View-Relative Positional Embedding (VRPE)
proposed by us for point cloud cross-view reconstruction,
we discuss the difference between our VRPE and existing
RPE methods. In the fields of Natural Language Processing
(NLP) and 2D vision, RPE techniques have been widely
adopted [17, 20, 21]. For instance, Rotary Positional Em-
bedding (RoPE) [18] is an emerging RPE technique gain-
ing traction in the realm of large language models (LLMs).
RoPE integrates rotational transformations to encode rela-
tive token positions, enabling more efficient extrapolation
over unseen sequences. iRPE [20] first reviews existing
relative position encoding methods, and then proposes new
RPE methods dedicated to 2D images. The work [16] inves-
tigates the potential problems in Shaw-RPE and XL-RPE,
which are the most representative and prevalent RPEs, and
proposes two novel RPEs called LRHC-RPE and GCDF-
RPE. Generally, in NLP and 2D vision, RPE captures the
relative distances or orientations between tokens or pix-
els to enhance the model’s capacity to understand relation-
ships between paired elements. This approach often leads
to improved generalization, especially when handling out-
of-distribution data.

In contrast, our proposed VRPE is designed with a view-
or instance-based focus, rather than a token-based one.
Rather than capturing relationships between individual to-
kens or pixels, our VRPE encodes the positional relation-
ships between two decoupled views. Our approach is not
aimed at improving extrapolation or generalization. Instead,
it is tailored to model the geometric and contextual infor-
mation between different views to facilitate accurate cross-
view reconstruction. This shift in focus makes our VRPE
fundamentally distinct from existing RPE methods, high-
lighting the importance of carefully distinguishing our ap-
proach from existing RPE techniques.

Related Positional Query (PQ) methods. The posi-
tional query is also used in 2D self-supervised learning
(SSL) and Al-generated content (AIGC). PQCL [25] pio-
neered the introduction of positional query, aiming to rep-
resent geometric relationships between multiple cropped
views. PQDiff [26] advanced this concept by devising a
contiguous relative positional query module, applying it to
image outpainting to achieve arbitrary location and contigu-
ous expansion factor outpainting. Positional query has also
found applications in 2D segmentation tasks. For exam-
ple, DFPQ [8] generates positional queries dynamically by



leveraging cross-attention scores from the previous decoder
block and the positional encodings of the image features,
which together enhance the effectiveness of semantic seg-
mentation. Our method, however, distinguishes itself from
these existing positional query approaches by focusing on
the 3D world, which presents significantly greater complex-
ity (one more dimension) and challenges compared to 2D
image domains. By leveraging the obtained VRPE to query
the target view from the source view, our PQ technique suc-
cessfully achieves decoupled view reconstruction.

4. Additional experimental details

Training details. We utilize ShapeNet [1] as our pre-

training dataset, which comprises a curated collection of 3D

CAD object models, featuring 51K unique models across

55 common categories. The pre-training process spans

300 epochs, employing a cosine learning rate schedule [12]

starting at Se-4, with a warm-up period of 10 epochs. We

use the AdamW optimizer [13] and a batch size of 128. All

experiments are conducted on a single GPU i.e., RTX 3090

(24GB). For further training details including pre-training

and finetuning, refer to Tab. 3. During the pre-training of

our Point-PQAE on ShapeNet, we apply rotation to the in-
put point cloud following ReCon [15], followed by generat-
ing decoupled views from the augmented point cloud.

Finetuning evaluation protocol. For classification
tasks on ScanObjectNN and ModelNet40, as well as few-
shot learning on ModelNet40, we adopt three evaluation
protocols, following [3, 15], to assess both the transfer-
ability of learned representations (FULL) and the quality of
frozen features (MLP-LINEAR, MLP-3). The protocols are
as follows:

(a) FULL: Fine-tuning the pre-trained model by updating
both the backbone and the classification head.

(b) MLP-LINEAR: Fine-tuning by updating only the clas-
sification head, which consists of a single-layer linear
MLP.

(c) MLP-3: Fine-tuning by updating only the parame-
ters of a three-layer non-linear MLP classification head
(which is structured the same as in FULL).

5. Additional ablation study

Integrate Positional Query (PQ) scheme into knowledge
distillation. The knowledge distillation [10] typically in-
volves inputting the same instance into both the student
model and the frozen teacher model, then maximizing the
mutual agreement between their outputs to distill knowl-
edge from the teacher to the student. Our positional query
block can be seamlessly integrated into knowledge distilla-
tion, allowing for cross-view distillation rather than being
confined to distillation within the same view. For example,
view 1 is fed to the student, view 2 is fed to the teacher,

and a positional query block is added after the backbone to
model relative relations and recover the latent representa-
tion of view 2. We conduct experiments on distilling the
pre-trained model ReCon [15], and the results are reported
in Tab. 4, indicating that our PQ scheme successfully learns
knowledge from the ReCon teacher and performs much bet-
ter than the baseline. It shows that the PQ scheme can be
easily utilized as a plug-in tool for knowledge distillation.

Reconstruction loss function. Tab. 5 shows the perfor-
mance of Point-PQAE using different reconstruction loss
functions: cosine similarity loss (cos), [1-form Chamfer
distance [5] (CD-l1), and the [2-form Chamfer distance
(CD-12). The results show the CD-/2 is more suitable for
Point-PQAE.

Siamese loss function. The generative pre-training task
designed by us is naturally a siamese structure and we get
the form of Leross = Loa—1 + L1y as stated in 2?. We
analyze the benefit of the siamese loss function by doing
an ablation study with loss functions L.,oss = Lo1 +
L1_9 or Lo,1 only. The Tab. 6 presents the experiment
results. It shows this siamese loss function contributes to
the performance of our Point-PQAE and brings accuracy
gain.

Minimum crop ratio. The minimum crop ratio r,,
is important for the proposed point cloud crop mecha-
nism. We conduct experiments to analyze the effect of
minimum random crop ratios on the performance. The
results are reported in Fig. 1. The results show that 0.6
is the best crop ratio for our Point-PQAE. When the ra-
tio is too low, the model struggles to extract sufficient
relevant information from the cropped view for effective
cross-reconstruction. Conversely, excessively high ratios
make the task too straightforward, hindering the model from
learning robust representations.

Definition of views and parts in our work. We em-
phasize the importance of distinguishing between parts and
views to understand the significance of decoupled view gen-
eration and our cross-view reconstruction method. We de-
fine the following:

* Without independently applying augmentations after
cropping, the relative relationships between the cropped
parts remain fixed.

* However, by performing view decoupling, the relative re-
lationships between parts become more diverse, and we
define these as views.

Existing self-reconstruction methods generally focus on
cross-part reconstruction (e.g., block masking in Point-
MAE [14]). In contrast, cross-view reconstruction (ours)
significantly outperforms cross-part reconstruction, as
demonstrated in the main paper Table 4, where line 4 out-
performs line 1.



Table 3. Training details for pretraining and downstream fine-tuning.

Config ShapeNet ScanObjectNN  ModelNet  ShapeNetPart S3DIS
optimizer AdamW AdamW AdamW AdamW AdamW
learning rate Se-4 2e-5 le-5 2e-4 2e-4
weight decay Se-2 Se-2 Se-2 Se-2 Se-2
learning rate scheduler cosine cosine cosine cosine cosine
training epochs 300 300 300 300 60
warmup epochs 10 10 10 10 10
batch size 128 32 32 16 32
drop path rate 0.1 0.2 0.2 0.1 0.1
number of points 1024 2048 1024 2048 2048
number of point patches 64 128 64 128 128
point patch size 32 32 32 32 32
augmentation Rotation Rotation Scale&Trans - -
GPU device RTX 3090 RTX 3090 RTX 3090 RTX 3090 RTX 3090
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Figure 1. Ablation study on different minimum crop ratios r,,, where the results (%) of three variants: OBJ_BG, OBJ_ONLY, PT_T50_RS

on ScanObjectNN are reported.

Table 4. Integrate PQ into distillation. Results on ScanobjectNN
(%) are reported.

Type OBJ_BG OBJ_ONLY PB_T50_RS
Train from scratch 83.0 84.0 79.1
PQ distillation 93.5 91.9 88.5

Table 5. Reconstruction loss function.
marked in gray.

The default setting is

Loss Function OBJ BG OBJ ONLY PB T50 RS

cos 90.5 89.8 85.2
CD-l1 93.1 91.7 89.4
CD-[2 95.0 93.6 89.6

Table 6. Siamese loss. The default setting is marked in gray.

Loss Function OBJ BG OBJ ONLY PB T50 RS

934 92.4 89.2
95.0 93.6 89.6

[:2—>1
£2—>1 + £1—>2

6. Limitations and future work

Point-PQAE is a novel cross-reconstruction generative
learning paradigm that differs significantly from previ-
ous self-reconstruction methods, enabling more diverse
and challenging pre-training. Point-MAE [14] pioneered
the self-reconstruction paradigm in the point cloud self-
supervised (SSL) learning field and variant optimizations
are well explored, e.g., cross-modal [3, 6, 15], mask-
ing strategy [24], and hierarchical architecture [23, 24].
Compared to the well-studied self-reconstruction, cross-
reconstruction remains significantly under-explored. As
the initial venture into cross-reconstruction, our Point-
PQAE opens a new avenue for advancement in point cloud
SSL. However, the model employs a vanilla transformer ar-
chitecture and is constrained to single-modality knowledge.
This architecture may not be optimally suited for cross-
reconstruction tasks. Furthermore, the limited size of the
available 3D point cloud datasets—due to the challenges
in data collection—restricts the broader applicability of our
single-modality approach. Future work could explore the



integration of knowledge from additional modalities or the
development of more efficient and appropriate architectures
for the cross-reconstruction paradigm.
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