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Appendix
This supplementary material is organized as follows.

• In Section A, we provide additional ablation studies to
further analyze the effectiveness of the proposed compo-
nents in UPRE. In particular, we conduct a comprehen-
sive analysis of each proposed modules, test the perfor-
mance of various enhancement strategies, evaluate the
effectiveness of different prompt priors, and examine the
impact of training strategies.

• In Section B, we list the prompt templates used for zero-
shot domain adaptation in object detection.

• In Section C, we describe more implementation details
of UPRE.

• In Section D, we provide additional qualitative visualiza-
tion results under cross-city scenarios and virtual-to-real
world transitions.

A. Additional Ablation Studies
In this section, we provide additional quantitative experi-

ments to further analyze the effectiveness of components in
UPRE.
The Effect of Each Proposed Components. To compre-
hensively evaluate the effectiveness of our proposed method,
we conducted extensive ablation studies across its key com-
ponents. The ablation study results are systematically orga-
nized in Tab. 1, where 𝑃𝑟𝑜𝑚𝑝𝑡 denotes the proposed do-
main adaptation prompt, 𝐸𝑛ℎ𝑎𝑛𝑐𝑒 represents unified repre-
sentation enhancement, 𝐼𝑚𝑔 indicates relative domain dis-
tance strategy, and 𝐼𝑛𝑠 signifies positive-negative separation
strategy. First, we investigate the limitations of address-
ing only one aspect bias. Rows 1-2 reveal that focusing
solely on either detection bias (𝑃𝑟𝑜𝑚𝑝𝑡) or domain bias
(𝐸𝑛ℎ𝑎𝑛𝑐𝑒) leads to suboptimal performance. For instance,
Row 1 achieves an mAP of 37.8 on the Daytime Foggy sce-
nario, while Row 2 achieves 38.5. These results underscore
the necessity of jointly addressing both biases for effective
adaptation.

Next, we validate the efficacy of our proposed RDD (rel-
ative domain distance) and PND (positive-negative separa-
tion) strategies. Rows 3-4 confirm our theoretical analysis,
showing significant improvements when these strategies are
applied. Specifically, Row 3 achieves an mAP of 39.2 on
Daytime Foggy, compared to Row 4’s 38.9, demonstrating
the complementary benefits of 𝐼𝑚𝑔 and 𝐼𝑛𝑠 in enhancing

𝑃𝑟𝑜𝑚𝑝𝑡 𝐸𝑛ℎ𝑎𝑛𝑐𝑒 𝐼𝑚𝑔 𝐼𝑛𝑠
Daytime Night Night Dusk
Foggy Clear Rainy Rainy

1. - ✓ ✓ ✓ 37.8 38.3 17.1 32.2
2. ✓ - ✓ ✓ 38.5 38.7 16.9 32.8
3. ✓ ✓ - ✓ 39.2 39.8 18.5 33.1
4. ✓ ✓ ✓ - 38.9 39.5 18.3 32.8
5. ✓ ✓ - - 35.1 36.2 16.7 30.5
6. - ✓ ✓ - 35.6 36.1 16.3 29.9
7. - ✓ - ✓ 35.9 36.5 16.8 30.5
8. ✓ - - ✓ 32.9 34.8 14.2 27.5
9. ✓ - ✓ - 32.8 34.3 14.1 27.2

10. ✓ - - - 32.1 34.0 13.5 26.5
11. ✓ ✓ ✓ ✓ 40.0 41.5 19.8 34.5

Table 1. Ablation study of internal modules. 𝑃𝑟𝑜𝑚𝑝𝑡 denotes the
proposed domain adaptation prompt, 𝐸𝑛ℎ𝑎𝑛𝑐𝑒 represents the uni-
fied representation enhancement, 𝐼𝑚𝑔 indicates the relative domain
distance strategy, and 𝐼𝑛𝑠 signifies the positive-negative separation
strategy.

detection performance. We further analyze the impact of
static prompts and image-level alignment. Row 6 simu-
lates the approach used in [10], revealing that image-level
methods fail to effectively fine-tune CLIP, resulting in de-
graded performance (e.g., mAP of 35.6 on Daytime Foggy).
Similarly, Row 7 highlights the importance of instance-level
contextual knowledge, showing that learnable prompts are
essential as detection knowledge priors for VLMs (mAP of
35.9).

To approximate the effect of proposal-based training in
DetPro [1], we remove 𝐼𝑚𝑔 and 𝐸𝑛ℎ𝑎𝑛𝑐𝑒 to train learn-
able prompts, as shown in Row 10. The results indicate
that prompt learning alone is insufficient to overcome do-
main bias, which achieves an mAP of only 32.1 on Daytime
Foggy. In contrast, Row 5 demonstrates that adding trainable
prompts to DetPro achieves a consistent mAP improvement
of +3.1 across all test scenarios, highlighting the effective-
ness of our enhancement approach.

Finally, Rows 8-9 focus on learning image- and instance-
level knowledge but fail to handle cross-domain knowledge
effectively, achieving mAP values of 32.9 and 32.8, respec-
tively. This limitation underscores the need for our proposed
method’s comprehensive design, which integrates multiple
components to achieve robust zero-shot domain adaptation.
The overall effectiveness of our method is demonstrated in
Row 11, where all components (𝑃𝑟𝑜𝑚𝑝𝑡, 𝐸𝑛ℎ𝑎𝑛𝑐𝑒, 𝐼𝑚𝑔,
𝐼𝑛𝑠) are combined. These results validate the synergy of
our proposed components and their ability to address both
detection and domain biases effectively.
Choice of Enhancements. One of the key factors of our
method is the alteration of feature style through enhance-
ment, enabling the acquisition of pseudo target domain fea-



Size E𝜇 E𝜎 Daytime Foggy Night Clear Night Rainy Dusk Rainy
1 × 1 - ✓ 36.0 36.7 16.5 30.9
1 × 1 ✓ ✓ 36.7 37.7 17.1 31.5

M × N - ✓ 38.0 38.5 18.1 33.3
M × N ✓ ✓ 40.0 41.5 19.8 34.5

Table 2. Ablation study of enhancements. To fit the feature size
of I, The sizes of M, N are set to 7, 7 under diverse weather
conditions.

Method Prior Daytime Foggy Night Rainy
Gaussian noise physics 34.5 16.3
CLIP-GAP[10] static prompt 36.9 18.7
PODA* [3] static prompt 39.2 19.0
DAI-Net*[2] darkness physics 36.7 18.9
PDD[7] static prompt 39.1 19.2
UPRE unbias prompt 40.0 19.8

Table 3. Comparison of various prompt priors

Iterative train Run Steps Daytime Foggy Night Clear Night Rainy Dusk Rainy
- - 40.0 41.5 19.8 34.5
✓ 100 39.5 38.8 18.6 33.9
✓ 500 37.1 36.9 17.5 32.5
✓ 1000 36.6 36.3 16.9 31.4

Table 4. Training schedule of prompt and enhancement

tures. In Tab. 2, we analyze various enhancement selections.
Compared to previous method[3] that create pseudo target
domain features at image level (Size 1×1), our region-level
design achieves superior results, with average 3.2% mAP
improvement. Furthermore, compared with only applying
E𝜎 [10] to features, our approach achieves mAP improve-
ments of 0.7% and 2.1% on 1 × 1 and M × N settings,
respectively.
Different Prompt Priors. To investigate the effectiveness
of different prompt priors, we studied four prior methods in
Tab. 3, including noise physics, static prompt, dark physics,
and our proposed unbiased prompt. We use Gaussian noise
as the noise physics with our framework. For the static
prompt-driven results, we report the performance of CLIP-
GAP [10] , PODA*[3] and PDD [7]. Our approach achieves
improvement of 4.5% mAP over noise physics methods and
1.2% over static prompt methods. We also report the re-
sults of the darkness physics prior method DAI-Net [2].
DAI-Net*, a day-to-night adaptation method based on dark
physics prompts, demonstrates excellent performance for
Night Clear conditions but performs poorly in other scenar-
ios. In comparison to DAI-Net, our method achieves an
average 2.1% mAP gain, demonstrating that our method is
applicable to various scenarios.
Training Schedule of Prompt and Enhancement. We
investigate the impact of different training strategies, as il-
lustrated in Tab. 4. In the unified prompt and representation
enhancement training stage, jointly training prompt repre-
sentations and enhancement features demonstrates the best
performance. As the interval step increases, a noticeable

Methods Daytime Foggy Night Clear Night Rainy Dusk Rainy
L𝑐𝑒 37.0 37.3 16.5 30.8

L𝑏𝑔 only 36.6 35.7 15.5 29.6
L𝑐 only 37.6 37.8 17.1 31.4
L𝑏𝑔 + L𝑐 38.7 38.9 17.8 32.8

Table 5. Influence study of the PNS. L𝑐𝑒 is cross-entropy loss.

Method Prompt Category Label of Daytime Night Night Dusk
Design Space Negatives Foggy Clear Rainy Rainy

DetPro Negative C ∪C𝑏𝑔 0 or 1 38.1 38.4 19.0 32.8
DetPro Shared C 1

|C | 38.5 37.9 18.8 33.3
PNS (Ours) Negative C ∪C𝑏𝑔 1

|C∪C𝑏𝑔 | 40.0 41.5 19.8 34.5

Table 6. DetPro vs. PNS: comparative analysis and ablation study.

decline in model performance is observed. The unified
training of prompt and enhancement representations pro-
vides positive interaction. Freezing one of these variables
disrupts the unified nature of the training process, resulting
in a suboptimal approach that is insufficient for mitigating
either detection bias or domain bias.
Influence of Instance-level Enhancement. Tab. 5 high-
lights the effectiveness of our PNS strategy in improving
performance. By separating positive and negative propos-
als and computing foreground (L𝑐) and background (L𝑏𝑔)
losses independently, our method achieves a substantial
mAP gain, e.g., +1.6% on Night Clear. Notably, L𝑏𝑔 per-
forms competitively, reducing mAP by average 1.0% com-
pared to the vanilla cross-entropy loss (L𝑐𝑒). Moreover, L𝑐

alone achieves comparable performance to the combined
loss (L𝑏𝑔 +L𝑐), underscoring the importance of effectively
modeling background context.
Comparison with DetPro. In Table 6, we present ablation
studies that highlight differences between PNS and DetPro.
As shown in line 1, DetPro struggles with training negative
prompt, because it only learns a prompt embedding that
draws all negative proposals close with a simple label of
0 or 1 (Detpro’s Eq.(8)). Therefore, as depicted in line 2,
DetPro opts to train the shared prompt by forcing negative
proposals to be equally unlike any foreground classes in
category space C (Detpro’s Eq.(5)). However, selecting from
foreground classes with a probability of 1

|C | overlooks the
utilization of the background category.

In contrast to DetPro, PNS trains negative prompt in
category space C ∪C𝑏𝑔, using 1

|C∪C𝑏𝑔 | for labeling negative
proposals in Eq.(12). This approach allows negative propos-
als to be equally unlike any classes in Eq.(11), which aids
the negative prompt in learning diverse context, as nega-
tive proposals variably encompass either pure backgrounds
or parts of objects. Contrasted with DetPro’s shared and
negative prompts, our method excels in performance across
all target domains, achieving notable improvement by 3.6%
and 3.1% in Night Clear, respectively. DetPro insufficiently
explores negative prompt, while PNS effectively trains the
negative prompt. PNS is not a direct application of DetPro;
it innovatively explores proposal separation in training neg-



Method Category Inference Computation Total Daytime Daytime Night Night Dusk
Time Cost Parameters Clear Foggy Clear Rainy Rainy

Faster-RCNN

Traditional

67ms 183G 52.7M 48.1 32.0 34.4 12.4 26.0
OA-DG 69ms 183G 52.7M 55.8 38.3 38.0 16.8 33.9
DAI-Net* 124ms 297G 78.1M 54.4 36.7 41.0 18.9 33.0
UFR - - - 58.6 39.6 40.8 19.2 33.2
CLIP-GAP

VLM-based
98ms 526G 131.4M 51.3 38.5 36.9 18.7 32.3

PODA* 72ms 185G 129.3M 51.8 39.2 38.7 19.0 33.4
PDD 101ms 531G 134.3M 53.6 39.1 38.5 19.2 33.7
UPRE(Ours) VLM-based 111ms 528G 129.8M 53.9 40.0 41.5 19.8 34.5

Table 7. The comparison of efficiency and effectiveness. All test settings are same. CLIP-GAP, PDD and UPRE are all based on the
Detectron2 framework, using CLIP’s ResNet101 backbone. UFR’s - denotes code and model remain unavailable. PODA only use visual
encoder during inference.
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Figure 1. The domain prompt templates used for zero-shot domain adaptation object detection.

ative prompt. Moreover, proposal separation is a commonly
used trick in detection tasks.
Efficiency analysis. Applying advanced large models [8, 9,
11] to ZSDA is promising but inevitably faces higher compu-
tational and memory costs. As illustrated in Table 7, UPRE
outshines VLM-based methods, notably PDD, with 4.5M
fewer parameters and a reduction of 3 GFLOPs in computa-
tional cost. Although UPRE is 10ms slower than PDD, this
latency is acceptable given its superior performance. To
ensure efficiency, we only leverage the MDP module during
inference, which uses less than 0.1M parameters.
Evidence of improvement attributed to domain adapta-
tion. To assess whether improvements stem from better

domain adaptation [4, 5] or just a stronger detector, we com-
pare different methods on the source domain to directly re-
flect detector performance. As shown in the Daytime clear
column of Table 7, UPRE performs moderately but shows
significant improvement in target domains.

B. Prompt Templates

For a fair comparison, we adopt the same prompts used
in CLIP [9]. Following previous works [7, 10], we ex-
tend the category names and domain characteristics into
sentences using multi-view prompts at both the image and
instance levels. Specifically, we use ”A photo taken in a



Cityscape KITTIBDD100K
Figure 2. Visualization results under cross-city scenarios. The top to bottom rows show results from CLIP-GAP [10], OA-DG [6], and
UPRE, respectively.

Cityscape BDD100K KITTIGTAV

Figure 3. Visualization results of virtual-to-real world transitions. The top to bottom rows show results from CLIP-GAP [10], OA-DG [6],
and UPRE, respectively.

[𝑑𝑜𝑚𝑎𝑖𝑛].” as the image-level prompt input for the text en-
coder. Then, we define ”A [𝑑𝑜𝑚𝑎𝑖𝑛] photo of a [𝑐𝑙𝑎𝑠𝑠].” as
the instance-level positive prompt and ”A [𝑑𝑜𝑚𝑎𝑖𝑛] photo
of an [𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑐𝑙𝑎𝑠𝑠].” as the instance-level negative
prompt. For the three cross-domain scenarios, we employ
90 [𝑑𝑜𝑚𝑎𝑖𝑛]-specific prompt templates, as illustrated in
Figure 1. We apply L2 normalization to obtain the final
multi-view prompt representations.

C. More Implementation Details
In CLIP, the input is a 224× 224 image, and the final

Attention Pool processes a 7× 7 feature map. Current ap-
proaches [10] primarily rely on image cropping for data

augmentation, resizing images to 224×224. However, this
method conflicts with the nature of object detection, as im-
ages often contain multiple object instances. To ensure that
training images retain more object instances, we use the
original 1067×600 images as input. In the relative domain
distance strategy, to align the feature size from the third layer
of the CLIP image encoder with the input size of the CLIP
Attention Pool, we first downsample the third-layer features
to 21× 21. Subsequently, a 3× 3 average pooling layer is
applied to produce a 7× 7 feature map. In the positive-
negative separation strategy, the third-layer features from
the CLIP image encoder serve as input to the RPN head.
These features are then processed by ROI-Align to extract



14× 14 region features. Next, the 14× 14 region features
are passed through the fourth layer of the image encoder,
resulting in 7× 7 detection features. Finally, these features
are fed into the classification and bounding box regression
heads to generate the detection results.

D. Additional Visualizations
In this section, we provide more visualization results un-

der cross-city scenarios and virtual-to-real world transitions.
As shown in Fig. 2, our method achieves the best perfor-
mance, while other methods exhibit issues with both du-
plicate detections and miss detections, demonstrating the
effectiveness of our approach. Compared to cross-city
scenarios, the virtual-to-real scenario is more challenging
due to the significant domain gap between the synthetic
GTAV game world and the real world. Despite this chal-
lenge, our method achieves satisfactory detection accuracy
compared to other approaches (see Fig. 3). This vali-
dates the theory that incorporating real-world weather styles
into a clear virtual environment can effectively transform it
into a realistic representation under various weather condi-
tions.
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