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1. More details.

Random Mask. During training, our random masks are
generated via three distinct strategies: (i) using a brush that
emulates human strokes; (ii) employing random geomet-
ric shapes—such as rectangles and ellipses with arbitrary
positions and sizes; and (iii) composing composite shapes
by overlapping several random geometric forms. See the
Fig. 8.
Hierarchical text prompting. As illustrated in the Fig. 9,
we present local patch-specific prompt examples annotated
via the Vision-Language Models (VLM). This text-guided
strategy effectively ensures the plausibility of fine-grained
content details.
Reference Patch Selection Strategy. As illustrated in Al-
gorithm 1, our reference patch retrieval process locates se-
mantically consistent regions in the original image by mea-
suring the cosine similarity between CLIP embeddings of
candidate patches and the masked region, thereby optimiz-
ing reference information through feature-space proximity.
The semantic distance is exclusively determined by this co-
sine metric, which effectively captures the semantic align-
ment between patches.
Additional ablation study for fairness. As shown in
Tab. 4, we conducted experiments on the same dataset
and training-setting(Sec.4.3), comparing (i) full-parameter
UNet fine-tuning, (ii) LoRA fine-tuning, and (iii) DCA (we
proposed).

Algorithm 1 Reference Patch Selection Strategy.
1: Input: Upsampled stage 1 Output Patches which is masked

Xm, Original Patches Xorig , Clip model C
2: Output: Reference Patches Xref

3: for Masked Patch Xi
m in Xm do

4: Compute CLIP embedding C(Xi
m)

5: dmax ← −1, XBestMatch ← ∅
6: for Original Patch Xj

orig in Xorig do
7: Compute CLIP embedding C(Xi

orig)

8: Compute distance d←
C(Xi

m)⊤C(Xj
orig)

∥C(Xi
m)∥2∥C(X

j
orig)∥2

9: if d > dmax then
10: dmax ← d, XBestMatch ← Xj

orig

11: end if
12: end for
13: Xi

ref ← XBestMatch

14: end for
15: Return Reference Patches Xref

Figure 8. Random masks strategies.

2. Additional Qualitative Results.
Comparison with Super-Resolution Models Integrated
with Blend Diffusion. Our analysis of state-of-the-art
super-resolution models integrated with blend diffusion, as
illustrated in the Fig. 10, reveals that these approaches often
fail to maintain fine-detail consistency between masked and
unmasked regions, leading to unpredictable, low-quality
textures and conspicuous seams. In contrast, our model
effectively leverages information from the unmasked areas
and inter-patch cues to integrate global image coherence,
resulting in aesthetically pleasing inpainting outcomes.
Under both global and local text prompts. We present
a qualitative evaluation (see Fig. 11) comparing our model
with and without the Dual Context Adapter (DCA) module.
Our results demonstrate that, although the DCA module is
fine-tuned exclusively with global text, its integration as an
attention-based plug-in does not adversely affect the base-
line model. In fact, in most cases, the model with DCA
exhibits an enhanced understanding of the image context.
Additional qualitative evaluations. Against other inpaint-
ing models are presented in Fig. 12, Our two-stage model
demonstrates outstanding performance by optimizing both
contextual understanding and fine detail generation.

Random Masks and Global Prompt
Model Name FID ↓ Aesthetic score ↑ CLIP Score ↑ LPIPS ↓
SDXL-I 13.326 5.480 26.268 0.129
SDXL-I + LoRA-fine-tuning 13.284 5.376 26.119 0.150
SDXL-I + UNet-fine-tuning 13.168 5.405 26.249 0.152

DCA(Ours) 12.167 5.591 26.458 0.128
Segmentation Masks and Local Prompt

Model Name FID ↓ Aesthetic score ↑ CLIP Score ↑ LPIPS ↓
SDXL-I 9.565 5.559 26.990 0.092
SDXL-I + LoRA-fine-tuning 9.725 5.415 26.581 0.091
SDXL-I + UNet-fine-tuning 9.683 5.445 26.684 0.093

DCA(Ours) 9.427 5.598 27.002 0.089

Table 4. Following the DCA ablation (Sec.4.3), we fine-tuned
SDXL-Inpainting under identical settings to enable a fair compar-
ison with our DCA module.



Figure 9. Each patch is assigned a dedicated prompt via the VLM, and overlaps between patches are introduced during segmentation to
ensure coherent generation.

Figure 10. Compare with super-resolution generation models combined with blend diffusion. These methods often fail to account for the
context inside and outside the masked regions, leading to issues such as texture inconsistencies, seams, and color discrepancies.



Figure 11. By fine-tuning DCA with global text prompt, we enhance the model’s utilization of image context via a plugin-based approach,
without compromising its inherent ability to comprehend short local texts.



Figure 12. Our model preserves both the structural correctness and aesthetic quality of the content while generating more refined details,
ensuring that high-resolution inpainting outputs faithfully match the original image’s level of detail.


