A. Implementation Details

A.1. Model Configuration

We use Llama-3.1-8B [10] as our base language model due
to its strong performance on language tasks and efficient ar-
chitecture. For visual quantization, we employ a pretrained
VQ-GAN model with a codebook size of 8192, which pro-
vides sufficient granularity for capturing visual details while
maintaining computational efficiency. When applying our
visual BPE tokenization, we experiment with extended vo-
cabulary sizes ranging from 4K, 8K to 16K additional to-
kens to investigate the trade-off between representational
capacity and learning efficiency as discussed in Section 4.3.

For priority-guided encoding, we set spatial consistency
weight a = 0.3 and scaling parameter o = 2.0 by de-
fault, determined through ablation studies on a validation
set. These parameters balance the influence of frequency
and spatial consistency in token pair selection.

A.2. Hyperparameters for the VQ-GAN model

The hyperparameters for the VQ-GAN model used in our
experiments are shown in Table 5. The embedding dimen-
sion of 256 and codebook size of 8192 were chosen to pro-
vide sufficient representational capacity while maintaining
computational efficiency. The input resolution of 512 al-
lows for capturing fine-grained visual details without ex-
cessive memory requirements. We disabled dropout to pre-
serve maximum visual information during the quantization
process.

Hyperparameter Value
embedding dimension | 256
codebook size 8192
z_channels 256
resolution 512
dropout 0

Table 5. Hyperparameters for the VQ-GAN model

A.3. Hyperparameters for multi-stage training

The hyperparameters for multi-stage training are shown in
Table 6. We carefully designed these parameters to align
with the objectives of each training stage. In Stage 1, we use
a higher learning rate (1e-3) to efficiently align the newly
initialized visual token embeddings. For Stages 2 and 3,
we reduce the learning rate (3e-5 and Se-5 respectively) to
prevent catastrophic forgetting while enabling meaningful
updates to transformer layers. We increase gradient accu-
mulation in later stages to effectively handle more complex
data types. All stages use a cosine learning rate schedule
with a 3% warmup period to stabilize training.

Hyperparameter | Stagel | Stage2 | Stage3
batch size 1 1 1
gradient accumulation 2 4 4
learning rate le-3 3e-5 5e-5
learning schedule cosine cosine cosine
warmup ratio 0.03 0.03 0.03
weight decay 0 0 0
epoch 2 3 3
optimizer AdamW | AdamW | AdamW
deepspeed stage 2 2 2

Table 6. Hyperparameters for multi-stage training

A.4. Data Details

Following our categorization in Section 3.6.1, we use a di-
verse set of datasets for different training stages.

* Foundation Data (FD): We use 595K images from CC-
3M [50], 558K from LCS [33], and a subset of LAION-
2B-en [47] for basic image-caption alignment.

* Perception Data (PD): We incorporate 50.6K samples
from RefCOCO [24] and 66.2K from AOKVQA [48] to
enhance detailed visual perception.

* Reasoning Data (RD): We utilize 504K general QA
entries and 343K reasoning-focused entries from the
LLaVA-OneVision Dataset [26].

 Instruction Data (ID): We include 57.3K entries from
ShareGPT4o0 [8], 70K from ALLaVA Inst [7], 180K
OCR-related entries from LLaVA-OneVision, and 100K
from Infinity-MM [18].

Our curriculum learning approach relies on carefully
designed data composition ratios that shift across training
stages:

e Stage 1 (Embedding Alignment): Rrp > Rpp >
Rrp = Rip = 0, focusing primarily on foundation data
with some perception data

» Stage 2 (Selective Fine-tuning): Rrp =~ Rpp >
Rrp > Rjp, with increased emphasis on perception and
reasoning data

o Stage 3 (Full Fine-tuning): R;p > Rrp > Rprp =~
Rpp, prioritizing instruction and reasoning data

Specifically, table 7 presents the specific percentage

breakdown for each data type across the three training
stages.

Training Stage | FD PD RD ID

Stage 1 (Embedding Alignment) | 80% 20% 0% 0%
Stage 2 (Selective Fine-tuning) 40% 30% 20% 10%
Stage 3 (Full Fine-tuning) 15% 15% 30% 40%

Table 7. Data composition ratios (%) across training stages



A.5. More analysis on inactive tokens.

To further investigate the token activation mechanisms in
Section 4.3, we analyzed token usage across vocabulary
sizes and training strategies. Results Table 8 show that less
efficient training (where data composition and weight up-
dating misalign with model progression) worsen the issue.
This suggests a potential optimization direction: training
strategies that properly align with the model’s capability
progression can better utilize the BPE vocabulary.

4K vocab 8K vocab 16K vocab

Standard 0.7 3.1 7.9
Reverse curriculum 2.4 7.8 12.3
2-stage training 32 9.1 15.6

Table 8. Token usage across vocabulary sizes. The value represent
the percentage of inactive tokens.

A.6. Computational Analysis

We’ve quantified the computational overhead as shown in
Table 9. The values are normalized and relative to base-
line. For inference, larger vocabularies have minimal im-
pact since token mapping is negligible once established.
For training, larger vocabularies require more iterations for
mapping learning and embedding expansions, increasing
training cost.

Memory (xbase) Training (xbase) Inference (xbase)

0 (base) 1.00 1.00 1.00
4K 1.15 1.09 1.01
8K 1.27 1.21 1.02
16K 1.57 1.45 1.05

Table 9. Quantified analysis of computational overhead.

A.7. Categorical Comparison

We conducted additional evaluation on MLLM-Bench. The
results in Table 10 explicitly show how our performances
vary across different task categories. While our model
shows some decreases in tasks requiring fine-grained de-
tails, it demonstrates significant improvements in tasks re-
quiring general comprehension and reasoning.

Category Being-VL-0.5" LLaVA-Next fie (equal perf)
Perception 28 32 10
Understanding 55 32 23
Applying 29 16 15
Analyzing 53 38 29
Evaluation 14 19 7
Creation 11 6 3

Table 10. Evaluation results on MLLM-Bench.

B. Case Study

# Case 1

Question: Please give me a detailed de-
scription of this image.

Being-VL-0.5: In this image, a man wearing a turquoise
t-shirt and navy shorts is sitting on a gray bollard with red
stripes. To his left, a brown and white dog sits on the brick
pavement, connected to the man by a leash. The dog appears
calm while the man sits with one leg extended. They are on
a brick sidewalk in front of a building with display windows.

Being-VL-0: There is a person sitting with a dog beside him.
The person is wearing a blue shirt and shorts. The dog is
brown and white. They are in front of a building with win-
dows. The person is sitting on a post, and the dog is sitting
on the ground. This appears to be in a city, with a brick floor.

Key Differences: Our method captures more precise visual
details (specific colors and features) and clearer spatial rela-
tionships between the man and dog in the scene.

# Case 2

Question: Please narrate what you ob-
g serve in this image.

Being-VL-0.5: The image features a white seagull standing
on wooden deck planks in the foreground. The bird is posi-
tioned in profile, facing right, with its yellow beak and pink
feet contrasting against its white and light gray feathers. In
the background is an orange and black tour boat navigating
through brownish water. The boat has a covered upper area
and appears to be carrying passengers. The wooden deck
seems to be part of a wharf or landing platform.

Being-VL-0: In the image, there’s a seagull standing on a
wooden platform. The seagull is white with a yellow beak.
In the background, there’s a boat on brown water. The seagull
is looking in one direction while standing on wooden boards.
The boat is orange and black with some people on it.

Key Differences: Our method provides more detailed de-
scriptions of visual elements (seagull’s features) and better
spatial understanding of the scene components.




# Case 3

Question: Could you describe what you
8 sce in this image?

Being-VL-0.5: This image shows a European urban trans-
portation scene. In the foreground, two cyclists are riding on
a dedicated bike lane that runs parallel to tram tracks. The
leftmost cyclist wears a checkered shirt and has a bag on
his bicycle rack. The scene displays structured transportation
zones: pedestrian sidewalk, cycling path, and tram tracks in-
tegrated together. In the background stands a large historic
building with distinctive architecture. The sky is blue with
white clouds.

Being-VL-0: The image shows a city street with people rid-
ing bicycles. There are tram tracks on the ground and large
buildings in the background. On the left, a person with a
checkered shirt is riding a bicycle. The sky is blue with some
clouds. This appears to be a European city based on the ar-
chitecture and transportation setup.

Key Differences: Our method provides more detailed de-
scription of key elements and offers clearer understanding of
the transportation infrastructure organization.

In this section, we present qualitative examples to
demonstrate the enhanced visual understanding capabilities
of our approach compared to the frequency-only BPE base-
line (Being-VL-0). These cases demonstrate several key ad-
vantages of our approach:

* Semantic Integrity: Our priority-guided encoding bet-
ter preserves complete semantic entities (people, animals,
vehicles) as coherent token groups, enabling more accu-
rate descriptions of subjects.

» Spatial Relationship Understanding: By incorporating
spatial consistency in our encoding strategy, our model
shows enhanced ability to describe relative positioning of
elements within the scene.

* Fine-grained Visual Detail Recognition: Our approach
better captures small but significant visual details, includ-
ing colors, patterns, and distinctive features.

¢ Structural Pattern Recognition: The unified token cre-
ated by our method facilitates stronger recognition of
functional structures and their relationships within the
scene.

C. Broader Impact

This work advances multimodal understanding through a
unified token-based approach, with several potential soci-
etal implications. On the positive side, improved visual-
language integration could enhance accessibility technolo-
gies for visually impaired users, enable more natural
human-computer interaction, and support educational appli-
cations through better comprehension of multimodal learn-
ing materials. Our method’s unified representation strategy
may also lead to more computationally efficient models,
potentially reducing the environmental footprint of multi-
modal Al systems.

However, like other powerful visual-language models,
our approach could be misused to generate misleading con-
tent if deployed without proper safeguards. Models with
enhanced visual understanding may also inherit or amplify
biases present in training data. We encourage thoughtful
consideration of these risks in downstream applications,
including implementing appropriate content filtering, con-
ducting fairness evaluations across diverse demographics,
and establishing clear guidelines for responsible deploy-
ment. Furthermore, the growing computational require-
ments for training such models raise sustainability concerns
that should be addressed through efficiency optimizations
and responsible resource use.

D. Detail of Priority-Guided Encoding

Algorithm 2 presents the complete version of our priority-

guided encoding process (Algorithm 1) in the main

manuscript. The key extensions compared to the simplified

version include:

* Comprehensive processing of both horizontal and verti-
cal. adjacencies in two-dimensional visual data.

* Detailed calculation procedures for spatial consistency
metrics

* Implementation of the diversity filtering mechanism to
ensure vocabulary coverage.

E. Licenses

In our code, we have used the following libraries which are
covered by the corresponding licenses:

* Numpy (BSD-3-Clause license)

PyTorch (BSD-3-Clause license)

* Transformers (Apache license)

¢ Numba (BSD-2-Clause license)



Algorithm 2 Priority-Guided Encoding (Detailed Version)

1: Input: Quantized training data C, initial vocabulary V/, target vocabulary size Nyocab, Spatial weight o, filtering threshold

T

2: Output: Extended vocabulary D
3: D« V
4: while N1, < target size do

S:
6
7:
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:

P+
for each image [ in C do
for each position (7, j) in I do
Consider horizontal pair (I; ;, I; j4+1) if valid
Consider vertical pair (I; ;, I;11 ;) if valid
Update frequency counts for all considered pairs
end for
end for
for each token pair (a, b) with nonzero frequency do
F(a,b) < count(a,b)/ >, , count(z,y)
a(a,b) + (0,0)
for each occurrence of pair (a, b) in position (4, 7, d) do
u;(a,b) < (0,1) if d is horizontal, (1,0) if d is vertical
t(a,b) + a(a,b) + u;(a,b)
end for
@(a,b) < @(a,b)/Nqp
S(a,b) + 0
for each occurrence of pair (a, b) with position u;(a, b) do
(s, @) + exp(—|u; — al*/20%)
S(a,b) < S(a,b) + d(u;,w)
end for
S(a,b) < S(a,b)/Nap
P(a,b) + F(a,b) + a- S(a,b)
end for
Select top-k pairs by priority: {(a1,b1), ..., (ag, br)}
Filter out pairs with similarity > 7 to existing tokens
(a*,b*) < argmax;eqy,. k) Plai, b;)
Create new token ¢ = (a*, b*)
D <+ DuU/{c}
Update C by replacing all adjacent occurrences of (a*, b*) with ¢

35: end while
36: return D

> Initialize with base vocabulary

> Priority scores for token pairs

> Normalized frequency
> Initialize average relative position

> Average relative position
> Initialize spatial consistency

> Spatial similarity

> Average spatial consistency
> Combined priority score
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