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Supplementary Material

Figure 6. Task observations. The figure illustrates an example
data instance from the Select Toy task, including multi-camera po-
sitions, multi-view RGB images, 3D point clouds, and the expert
trajectory.

6. Benchmark Implementation

6.1. Task Descriptions

All Tasks. VLABench includes both 60 primitive and 40
composite tasks. These tasks encompass a wide range of
manipulation skills and involve many high-level capabil-
ities. The skills include 1) Pick&place, 2) Open&close
door, 3) Open&close drawer, 4) Hang objects on the wall,
5) Use tool e.g. Hammer nail, 6) Press button, 7) Insert,
8) Pour, 9) Twist, and 10) Explore. For higher-level in-
telligence, VLAbench’s evaluation dimensions encompass
complex scene understanding, implicit semantic analysis,
world knowledge transfer, understanding of physical laws,
relative spatial perception, long-term task planning, and
even multi-step logical reasoning. Table 11 provides a de-
tailed introduction to the 100 tasks involved in VLAbench,
including the type of each task, the manipulation skills in-
volved, the scope of high-level intelligence examined, the
average episode length at a control frequency of 10Hz, as
well as a detailed description of the task and an explana-
tion of its challenges. For the sake of clarity in the table,
we will use abbreviations to represent the various intelli-

Figure 7. Examples of task variants in different episodes. Row
1: Insert Flower task from the left shoulder view. Row 2: Play
Texas Hold’em task from the front view. Row 3: Heat Food with
Microwave task from the right shoulder view. Examples in the
same row originate from the same task but differ in task objectives,
distracting objects, spatial configurations, spatial poses, etc.

gence dimensions. M&T corresponds to Mesh & Texture
Understanding, SP corresponds to Spatial Understanding,
C&W corresponds to Common Sense & World Knowledge,
SEM corresponds to Semantic Conversation Understand-
ing, PHY corresponds to Physical Laws Understanding,
and L&R corresponds to (Logistic) Reasoning.

Long-horizon Design with Multistep Reasoning. Com-
pared to previous benchmarks, VLAbench places more em-
phasis on comprehensive long-term reasoning. The rea-
soning defined here includes associating world knowledge
with visual mesh or texture information to solve tasks, un-
derstanding latent task requirements through emotional lan-
guage interpretation, mapping spatial descriptions to target
states, subtask planning for multi-step operations, logical
understanding, calculations, and result derivation, among
others. Figure 8 presents a detailed comparison of the
average episode length of overall tasks. VLABench ex-
hibits the longest horizon among both Primitive and Com-
posite tasks, surpassing RoboCasa Atomic and RoboCasa
Composite by 27.0% and 35.1%, respectively. Further-
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Figure 8. Comparison of nomalized horizon length. VLABench
significantly surpasses other benchmarks in terms of average task
length.

more, VLABench demonstrates significantly greater multi-
step reasoning depth compared to other task sets, including
sub-task numbers, inferring users’ hidden semantics, inte-
grating visual and commonsense information, spatial rea-
soning, and even logical reasoning, as exemplified by solv-
ing math problems.

Episode Diversity with Task Variants. In VLABench,
a task represents a broad category of activities designed
around specific assets and the actions an agent performs.
These tasks are centered on object-related themes and
require diverse visual information, relevant common-sense
knowledge, and rich semantic input from the user. To
ensure variability, each rollout introduces different target
objects and receptacles, creating unique task instances.
To more clearly illustrate the diversity of episodes within
the same task, we introduce task variants. More specifically,
these task variants include different instances of the same
category of objects(O), different object categories (C), task-
irrelevant distractions (D), diverse language instructions
(L), different spatial layout (S), and diverse object textures
and backgrounds (V). Unlike previous benchmarks [38]
where episodes with different task variants were treated as
separate tasks, VLABench unifies such variations under a
single task category. Figure 7 illustrates examples of task
variants and episodes.

Grasp Obj N-Cate N-Obj Recep N-Cate N-Obj
Billiards 2 24 Billiards Table 1 1

Books 8 52 Shelf 1 10

Baked Goods 5 60 Microwave 1 5

Condiment 5 50 Cabinet 1 5

Dessert 4 58 Tray 1 15

Drink 9 130 Fridge 1 5

Flower 9 25 Vase 1 10

Fruit 11 227 Box Container 2 10

Ingredient 16 181 Cutting Board 1 15

Mahjong 1 38 Counter 1 20

Number Cube 1 10 Safe 1 5

Painting 1 286 Stove 1 5

Poker 1 54 Table 1 20

Snack 8 97 Juicer 1 3

Flatware 4 80 Crockery 7 136

Tool 9 49 Coffee Machine 1 5

Toy 35 140 Placemat 1 10

Chemistry Solution 1 30 Tube Container 1 1

Name Tag 1 30 Flask 1 5

Table 3. Assets statistics. N-cate denotes the total number of
object categories, while N-obj represents the total count of object
instances. This table lists most of the assets.

6.2. Task Observation
Each task in VLABench supports multi-view RGB-D

images, semantic segmentation images, and point cloud in-
puts. Figure 6 illustrates an example, showcasing the visual-
ized point cloud data along with images from multiple view-
points. Similar to general standard RLDS format datasets
[50], each demonstration in VLABench not only includes
the aforementioned multi-view RGB-D images and point
clouds but also comprises: a list of language instructions,
episode terminal, sparse reward, actions, full observations
including joint positions, joint velocities, end effector posi-
tion and orientation, grasping state, etc.

6.3. Task Difficulty Level
We further quantify the task difficulty level in Ta-

ble 4 based on the task variant number(Ntv), subtask
number(Nsub), and reasoning step number(Nrs).
Task Variant Score. The task variant is introduced in sec-
tion 6.1. The difficulty score introduced by quantifying task
variants is as follows:

Scoretv = Ntv/TVmax (3)

where TVmax is set to 6 after comparing with multiple
benchmarks.
Sub-step Number Score. Although we computed the nor-
malized horizon length as shown in Figure 8, it does not
fully reflect the long-term nature of the task due to differ-
ences in data collection. Therefore, we introduce sub-steps



Benchmark TV↑ Nsub↑ Nrs↑ DL↑
RLBench D,O,S 2.31 0 28.86

Calvin S, V 5.0 0 40.0
SimplerEnv D,S,V 2.11 0 27.66

Libero D,S 2.16 0 22.96
VLABench C,D,L,O,S,V 3.66 1.78 75.96

Table 4. Benchmark difficulty level comparison. VLABench
significantly outperforms other benchmarks in difficulty level.

as a quantification metric, where each sub-step represents
an atomic skill mentioned in section 6.1, such as pick, open,
and pour. We computed the average number of sub-steps
across all tasks in the language-conditioned manipulation
benchmarks and defined the difficulty score as follows:

Scoresub = Nsub/SUBmax (4)

where the SUBmax is set to 5 by default.
Reasoning Step Score. Similar to concepts in the LLM
field, we define any behavior that requires intelligent rea-
soning as a reasoning step. This includes visual informa-
tion with common sense, logical reasoning, semantic ex-
traction, etc. However, VLABench is the first benchmark
to introduce the concept of reasoning into the manipulation
domain. Previous benchmark tasks mostly directly describe
the task goals and requirements, resulting in a reasoning
step count of zero. The difficulty score of reasoning steps
can be represented as:

Scorers = Nrs/RSmax (5)

where RSmax is set to the current maximum number of rea-
soning steps, which is 3.
Difficulty Level. The difficulty level is computed as the
sum of the three normalized scores:

DL = αScoretv + βScoresub + γScorers (6)

where α = 0.3, β = 0.3, γ = 0.4 in default setting, consid-
ering the importance of the intelligence of VLAs.

6.4. Domain Randomization
To ensure task diversity and broad data distribution, each

task in VLABench incorporates multiple domain random-
ization techniques. These diversifications include:
• Mesh&Texture Randomization. This refers to the ran-

dom variation of different instances within the same ob-
ject category. For example, if a task scene requires an
apple, the apple’s mesh is randomly selected from a pool
of 20 distinct instances.

• Position&Orientation Randomization. The default val-
ues for this randomized attribute are set as follows:
the position offset is a random value within the range

Figure 9. Diverse scenes. VLABench supports a wide range of
different scenes.

[−0.05, 0.05] along the x and y directions, and the ori-
entation is randomized with the yaw angle in the range
[−π/10, π/10].
In certain tasks, including SelectFruit, grid sampling is
employed for the random distribution of scene objects.
Objects are constrained to be distributed within a grid
space based on a maximum distance limit and are further
subjected to the aforementioned basic pose offset.

• Mesh Scale Randomization. For the same mesh,
VLABench scales the size of objects within a reasonable
range, with the default scaling range set to [0.95, 1.05].

• Visual Disturbance. VLABench employs random trans-
formations of scenes and their relative positions, along
with texture randomization of elements such as desks,
floors, and walls, to achieve robust visual perturbations.
In addition to the aforementioned color space transforma-
tions, the lighting intensity is randomly augmented within
the range of [0.8, 1.2].

• Random Distractors. VLABench requires different ap-
proaches to interpret scenes and extract key visual infor-
mation accurately. To further enhance the robustness of
task settings, we introduced the option to add irrelevant
distractor objects to the tasks. For example, in the Select-
Toy task, 1–2 fruits can be included as visual distractors.

7. Simulation and Framework

7.1. Simulator

VLABench is built based on Mujoco[58] and its control
suite dm control[59]. We selected Mujoco as the core sim-
ulation platform for our benchmark due to its lightweight
design, high performance, and exceptional physical real-
ism. These advances enable convenient, rapid evaluation
of diverse algorithms. The VLABench framework is highly
modular, meaning various object entities can be flexibly
combined to create large-scale and diverse tasks and sce-
narios.



Figure 10. Cross embodiment. VLABench supports a wide range
of different embodiments.

7.2. Scenes
To ensure diverse task environments and rich visual in-

puts, we curated over 20 distinct scene types, drawing
inspiration from real-life contexts and task-specific back-
grounds. These scenes span everyday household settings,
such as kitchens, living rooms, and dining areas, and dy-
namic social scenarios, including shopping malls, super-
markets, chemistry laboratories, and medical rooms. Figure
9 highlights a small part of these carefully designed scenes.
Beyond the variety of scene types and structures, we in-
corporated over 20 unique material textures for floors and
walls, further enriching the visual complexity and enhanc-
ing the overall data diversity.

7.3. Cross Embodiment
In the standard evaluation process, VLABench employs

a 7-DoF Franka Emika Panda manipulator equipped with
a parallel gripper. We represent the position and orienta-
tion of the robot’s end-effector in Euclidean space R3 us-
ing 3D coordinates for position and quaternions for orienta-
tion. Using inverse kinematics, we then resolve these end-
effector poses into the corresponding rotational angles for
the seven joints.

To ensure versatility and broad applicability, VLABench
supports various embodiments, including multiple mod-
els of single-arm and dual-arm robots, humanoid robots,
quadrupedal robots equipped with end-effectors, and mo-
bile robots. Figure 10 illustrates the performance of these
different embodiments within VLABench.

7.4. Assets
To meet the requirements of diverse tasks and capabil-

ity assessments, we built an asset library centered around
multiple task themes. We inherited some annotated as-
sets from Robocasa [47] and retrieved numerous 3D models
from Objaverse[12]. For novel tasks, such as the series of
tasks we created around the toy theme, we carefully gath-
ered a variety of high-quality character models from online
3D model sites. These models were then converted to MJCF

format using the obj2mjcf [64] tool. Similarly to previous
work [32, 47], we expanded the dataset of common sim-
ple objects using generative AI models. Specifically, we
utilized Tripo.aI’s text-to-3D and image-to-3D features to
construct additional 3D objects, and Runaway.ai to gener-
ate multiple material textures.

Assets are divided into two main categories: objects-to-
grasp and receptacles. For objects-to-grasp, recommended
grasping points need to be annotated and are represented
in the XML file using sites with class=grasppoint. For re-
ceptacles, both bounding boxes and recommended place-
ment points are required: the former is annotated us-
ing sites with class=keypoint, while the latter is repre-
sented with class=placepoint. In the coarse and large-scale
pre-annotation process, we annotated grasp points on all
objects-to-grasp with Graspnet [16, 17] and manually re-
fined them as needed. For receptacles, we used SAM [31] to
assist in annotating bounding boxes and assigning the place-
ment point default above the bottom of the receptacles. Sub-
sequent manual refinement and post-processing were ap-
plied after pre-annotation. Table 3 provides an overview
of the rough categories and the corresponding number of
assets.

7.5. Extensibility

VLABench benefits from its modular design, offering
strong flexibility and scalability in task composition. In
terms of the codebase design, VLABench primarily in-
cludes:
• Entity class: Entity is the base class of all the ob-

jects to interact within VLABench. It is one of the core
components of the object-centric data collection frame-
work. All Entity objects are divided into two cate-
gories: GraspedObject and Receptacle. If a user
wishes to add new assets, they simply need to inherit from
the base class and register them in the code. For new func-
tionalities, users are required to develop them according
to their specific needs.

• Robot class: Robot is the base class of all the robots
mentioned in Section 7.3. The Robot class primarily in-
cludes controllers for various robot models and interfaces
for retrieving robot states. The implemented base classes
currently cover single-arm, dual-arm, mobile arm, and
humanoid robots. Thanks to the solid base class design,
VLABench supports the rapid integration of new robot
models, in addition to the commonly used ones.

• Condition class: The Condition class is derived
to handle all the conditions used to determine whether a
task is complete, such as Contain, On, Pour, and so
on. If users wish to extend a new task, the task’s com-
pletion conditions can be defined by combining existing
Condition classes.

• Task class: The Task defines various tasks, includ-



ing different combinations of Entitys, task completion
conditions, the robot executing the task, and other neces-
sary interfaces. Thanks to the modularity and plug-and-
play nature of the system, new tasks can be easily ex-
tended.

Built on these core components and a vast assets library,
VLABench offers strong scalability, laying the foundation
for future large-scale simulations and datasets. A more
detailed tutorial will be updated in the open-source code
repository.

7.6. Compuation Resources

VLABench, built on Mujoco, is a lightweight simula-
tion benchmark with very low computational resource re-
quirements. As shown in Table 5, VLABench’s computa-
tional resource consumption is very similar to that of pre-
viously widely used benchmarks, and its running speed is
also within a comparable range. We took all the simula-
tion evaluation experiments on a single Nvidia RTX 3090
GPU (CUDA 12.2), with 256GB RAM and 48 CPU cores.
Notably, compared to Libero, VLABench requires the ren-
dering of multiple higher-resolution images, which leads to
longer evaluation times. This is primarily limited by the
rendering efficiency of the underlying simulator.

Benchmark VRAM(MB) RAM(MB) Resolution FPS Time(s)
RLBench[27] 93.68 2076.67 5× 128× 128 13.79 63.8
Simpler[35] 1531.22 1597.44 1× 480/512× 640 20.72 53.6
Libero[38] 1175.08 6193.15 2× 256× 256 15.22 36.3
VLABench 863.04 4408.93 4× 480× 480 12.97 73.1

Table 5. Benchmark computational resources comparison.
VLABench requires low computational resources while provid-
ing higher-quality observations, comparable to those of previous
benchmarks.

8. Dataset Building

8.1. Skill Library as Domain Specific Language

To facilitate task description and execution in robotic
manipulation, we design a domain-specific language (DSL)
tailored for our system. The DSL provides a structured
and human-readable way to define manipulation skills, their
parameters, and execution sequences. By abstracting low-
level commands into high-level instructions, the DSL en-
sures clarity, modularity, and ease of interpretation for vari-
ous tasks. The DSL consists of three primary components:
• Skills. Atomic manipulation operations such as Pick,

Place, Lift, etc.
• Parameters. Arguments specify each skill’s details, such

as the target object, orientation, and gripper state.
• Task Execute Sequence. Sequential or hierarchical com-

bination of skills to define a complete manipulation task.

8.2. Data Collection Progress

The automatic data collection process in VLABench is
built upon the aforementioned DSL-encapsulated code. For
each designed task, a corresponding task sequence is de-
fined to represent the order of operations required to com-
plete the task. For example, a case in Select Fruit requiring
the robot to pick up an apple and place it in a basket can
be expressed as a DSL sequence as follows. The parame-
ters, such as grasp pose and target position, are dynamically
generated based on the simulation environment, and prior
annotation information.

Pick("Apple",
{"gripper_state": "close",
"orientation": [np.pi, 0, 0]})

Place("Basket",
{"pose": [0.6, 0.4, 0.15],
"gripper_state": "open"})

All tasks involve the execution of Skills using motion plan-
ning algorithms for trajectory generation. Notably, the ex-
ecution of the Pick Skill requires the robotic arm to first
move to a preparation position. During this process, we
compute the overlap between the gripper’s point cloud and
the environment’s point cloud along the trajectory from the
preparation position to the grasping position. This overlap
is used as a rejection sampling condition to determine an
appropriate grasping direction.

8.3. Data Collection Method Analysis

Efficiency Comparison. To validate the reliability of our
data collection framework, we conducted a set of compara-
tive experiments with human experts performing teleopera-
tions. We invited three data collectors to gather 100 samples
for each of three tasks, using the same OSC controller as
Libero[38]. Among them, the Select Fruit task represents a
low-difficulty pick/place task, Insert Flower involves tasks
with complex rotations, and Take Chemistry Experiment
represents a complex long-horizon task, where any opera-
tional error results in task failure. For our data collection
framework, we conducted three trials using a single process
on the same Nvidia 4080 workstation, collecting 100 sam-
ples in each trial.
As shown in Table 6, our heuristic data automation method
achieve a great tradeoff both on success rate and speed, and
multiprocessing allows easy dataset scaling.

Method Select Fruit Insert Flower Chemistry Experiment
SR Time(s) SR Time(s) SR Time(s)

teleoperation 0.96±0.01 53.3±4.2 0.82±0.02 47.1±3.8 0.62±0.04 160.0±18.9
ours 0.76±0.02 36.5±1.2 0.39±0.02 27.4±0.9 0.47±0.03 84.0±3.2

Table 6. The result is the average of 3 trials, teleoperations are
conducted by three operators on the same 4080 workstation



Failure Cases Analysis. Due to the high level of random-
ness in each episode, the success rate of the object-centric
data collection approach is not 100%. We measured the suc-
cess rate from primitive to composite tasks, which fluctu-
ates between 25% and 95%. Moreover, as the tasks become
longer and the number of sub-tasks increases, the success
rate tends to decrease due to cumulative errors. This is par-
ticularly evident in the construction of composite task data.
After visualizing and analyzing the failure cases, we cate-
gorized them into the following types:
• Episode initialization error. Due to the random place-

ment of objects or different object instances during en-
vironment reset, collisions may occur in the initial state,
preventing the task from being completed correctly.

• Slippage during the grasping process. This is due to the
use of irregularly shaped objects and the gripper’s ten-
dency to clamp too tightly during grasping, which causes
non-planar objects to potentially slip.

• Incorrect solution by inverse kinematics. Due to the ran-
domness of the target object and the robot’s state, the
computed pose may result in collisions with the environ-
ment.

We further analyzed the success rates across different tasks
and the factors correlated with task success, as shown in
Figure 11. Through categorization of task characteristics,
we found that tasks involving manipulation of objects with
complex geometric structures typically exhibit the lowest
success rates, as these objects are highly sensitive to colli-
sions and inherently unstable. Additionally, as the number
of subtasks increases, the overall success rates show a de-
clining trend due to cumulative error propagation.

Figure 11. Success rates of data collection process.

8.4. Prompt for Interactive Instruction
We have generated a diverse set of instructions for

VLABench’s dataset and evaluation tasks. These linguis-
tically rich instructions effectively assess the ability of dif-
ferent models to achieve a comprehensive understanding of
task scenarios. All task types, including the five categories
of Primitive tasks and Composite tasks, share the follow-
ing system prompt. In the system prompt, {object list}
and {target objects} should be replaced with the actual
objects and target objects involved in each task’s scenario.
For example, in the Insert Flower task, the object list might
be [“rose”, “tulip”, “sunflower”], while the target objects

would be [“rose”]. For each data point or evaluation task,
we require the generation of ten distinct instructions, all re-
ferring to the same target object but expressed in completely
different ways.

System Prompt Template

I am going to make some task instructions for a
robot arm. Here are some objects:{object list}.
And the target entity is {target objects}.
The target entity is the object that the robotic arm
is supposed to grasp, move, or perform other oper-
ations on. Our task requirements are related to the
characteristics of the target object and should also
reflect everyday needs for a specific item.

For tasks involving common sense and world knowl-
edge, the prompt should additionally include the following
description, emphasizing the unique characteristics of the
target objects. An example for {Task-Specific Descrip-
tions and Emphases} in Select Toy with Common Sense
task is: “The target entity is the one that the robotic arm is
supposed to grasp, move, or perform other operations on.
Our task requirements are related to the characteristics of
the target object. The instruction should focus on IP, rather
than directly saying which toy to choose.”. While the few-
shot examples are:[“target object: Donald, instruction: ’I
want a toy in the Disney series.’”, “target object: Goku, in-
struction: ’Pick a toy which belongs to the dragon ball.’”].

Common Sense Template

{Task-Specific Descriptions and Emphases.}
Please find the target entity’s specific character
which is different from other target objects and
combine it into the instruction.
{Task-Specific Few-shot Examples.}
Please provide the task following the format of the
above example. Please provide ten tasks that meet
the above requirements and format.

For tasks requiring linguistically rich instructions, the
prompt extends the system prompt by incorporating the fol-
lowing semantic prompt. The few-shot examples in Select
Toy Semantic may be like: [“target object: batman, instruc-
tion: ‘I’m a big fan of DC series, please help me choose a
suitable toy.’”, “target object: Luffy, instruction: ‘Today is
my friend’s birthday, and I want to buy a Luffy figure for
him. Could you help me wrap it? Thank you!’”].



Semantic Template

Please find the target entity’s specific character
which is different from other target objects and
combine it into the instruction. Do not directly men-
tion the target entity by name and avoid explicitly
stating the need for the object. Instead, create tasks
that reflect real-life scenarios where the need for the
object is implied through casual, everyday observa-
tions. The task should suggest a need without say-
ing it directly, focusing on natural, implied requests.
{Task-Specific Few-shot Examples.}
Please provide the task following the format of the
above example.
The target entity must be the target entity. Please
provide ten tasks that meet the above requirements
and format.

Composite tasks integrate the abilities and skills in-
volved in primitive tasks, with each composite task featur-
ing its unique scenario and context. In this setup, while the
system prompt remains shared, each task is accompanied by
a specific prompt. Here, we present the specific prompt for
the Cluster Book task.

Composite Task Example: Cluster Book

The task now is to classify the books. Please de-
sign real-life scenarios where there is a need to cat-
egorize books and generate instruction based on the
classification requirement.
You cannot specify the exact classification method;
just create a realistic scenario that requires classifi-
cation and instruct it to categorize the books in front
of it.
Please make the generated instructions more diverse
in terms of conversational language, tone, and sce-
narios. Avoid sticking to a single-sentence struc-
ture.
{Task-Specific Few-shot Examples.}
Please provide the task following the format of the
above example.
Please provide ten tasks that meet the above require-
ments and format.

8.5. Data Quality and Diversity Analysis
Qualitative Analysis. To ensure collection stability,
human experts carefully adjusted the operational sequence
and key prior information such as grasp orientation, and
bounding box. Then human experts reviewed the quality
and diversity of visualized episodes rollouts by visualizing
the rendered video and trajectory points in 3D space.
Figure 12 visualized diverse trajectories from 10 different

Figure 12. Visulization of 10 trajectories of same task.

episodes. To ensure sufficient task information and clear
resolution, we input images from multiple perspectives
into GPT-4 and perform VQA tasks. We verified that all
visual information can be recognized by GPT-4. We use
the same data format in RoboCasa and Libero, both built
upon Mujoco, which have demonstrated the usefulness of
the collected data both in sim and real.
Quantitative Analysis. Although our task setup is chal-
lenging, the model is still able to learn from this data. In
Section 4.1, π0 demonstrates a good success rate on the
Select Painting task, and even on tasks with lower success
rates, the progress score is still relatively promising. We
also reviewed the videos of these policies interacting with
the environment and found that they tend to learn the
correct behavior patterns. However, due to insufficient ac-
curacy and limited generalization ability, they fail to handle
out-of-domain situations properly, leading to cumulative
errors.

9. Experiment Implementation
9.1. VLA Training Details

To assess the generalization ability of various VLAs, we
primarily fine-tune OpenVLA, Octo, RDT-1B and π0 using
our dataset. We utilize the original open-source code and
adhere to the default hyperparameters set by the authors.
For training OpenVLA and Octo, We converted the dataset
into the same format as Libero and then transformed it into
RLDS format for training. We use the hdf5 format dataset
to train RDT-1B and the Lerobot format to train π0 for 30k
iterations, as same as the original settings. Given that Open-
VLA has 7B parameters, we apply the recommended LoRA
strategy in all experiments, rather than performing full pa-
rameter fine-tuning. In contrast, the other three models un-



dergo full parameter fine-tuning. We train all models until
convergence is achieved. In particular, Octo exhibits a cer-
tain reluctance to converge, which might be attributed to its
relatively low level of generality. Note that we adhere to
the default configurations of these models: OpenVLA and
Octo process a single-view image as input, whereas π0 gets
two views and RDT-1B utilizes three different views. All
experiments are conducted on NVIDIA A800 with 80GB
of memory.
We choose five primitive tasks as basic training tasks:
{Select Fruit, Select Toy, Insert Flower, Add Condiment,
Select Painting} for tracks 1-5, considering the difficulty of
these tasks and the coverage of skills. In track 5, we evalu-
ate the tasks on unseen but similar five tasks: {Select Poker,
Select Mahjong, Select Billiards, Select Ingredient, Friction
QA}. In track 6, we choose five composite tasks as train-
ing and evaluation tasks: {Texas Holdem, Play Math Game,
Find Unseen Object, Cluster Toy, Hammer Nail then Hang
Picture }.

9.2. Evaluation of Worksflows
In evaluating the foundation model-based workflow al-

gorithms, we adopt the same evaluation process and metrics
used for assessing the VLAs. The procedure for evaluating
each task individually is outlined as follows:

1. Run the Base Model Workflow. Execute the base
workflow in the specified environment and record the
corresponding outputs, with particular emphasis on data
related to the model’s target entity detection information.

2. Task Evaluation. Once the relevant information has
been collected, the success of the task and the accuracy
of target identification are assessed. Specifically, cor-
rect identification of a target contributes 20% of the total
score, while task success will award full points.

3. Final Score Calculation. After evaluating individual
tasks several times, the scores for each time task are ag-
gregated to yield the final score for the model under each
configuration.

By applying this evaluation framework, we ensure a con-
sistent and comprehensive assessment of the model’s per-
formance across different tasks and settings.

9.3. Evaluation of VLMs
9.3.1. Evaluation Pipeline
Non-interactive Evaluation. Figure 3 illustrates the sim-
plified evaluation process specifically designed for VLMs
in VLABench. Firstly the evaluation dataset is generated by
initializing a series of task scenarios, each associated with
two four-view diagrams: one annotated with masks and la-
bels to identify distinct entity segments, and the other serv-
ing as a reference image without annotations, as shown in
Data Production module in Figure 3. A randomly selected

linguistic instruction from GPT4 relevant to the task ac-
companies these diagrams, forming the input to the Vision-
Language Model (VLM).

During inference time, we provide a detailed description
of the skill library, the requirements of output format, and
several few-shot examples in different settings. These ele-
ments collectively form the system prompt for querying the
VLM. The VLM is required to generate DSL output con-
sisting of a sequence of skills, where each skill includes a
name and associated parameters, conforming to predefined
patterns to enable systematic evaluation.

Then, the generated skill sequences are constructed into
a directed graph based on their logical dependencies. Sub-
sequently, these DAGs are matched with the reference ones
and scored in four metrics. Finally the scores are combined
using weighted aggregation to calculate a total score for
each model. Please refer to Section 9.3 in the supplemen-
tary material for more detailed metric computation.
Interactive Evaluation. Similar to the VLA and workflow
evaluation process mentioned in previous sections, interac-
tive evaluation computes a task progress score based on the
interaction with the environment. VLABench provides a
controller that parses the DSL action sequences output by
the VLM into executable actions, which are then applied
in a simulation environment to interact with real-world ob-
jects. This approach is one of the key metrics for evaluat-
ing robotic manipulation tasks. However, it is more time-
consuming compared to non-interactive approaches, and its
evaluation dimension is relatively limited, as it cannot dis-
tinguish between errors in skill selection and those in pa-
rameter generation.

9.3.2. Metrics
As discussed above, the entire evaluation process of

VLMs can be simplified to DSL generation and the score
can be computed through direct graph matching. The as-
sessment of the skill sequences output by the VLM is based
on the following four metrics. Skill Recall Rate (SR).
We use SR as the coarsest-grained metric to evaluate the
model’s capability to identify and invoke the correct skills.

SR =
|SLgt ∩ SLpred|

|SLgt|
(7)

where SLgt represents the list of skills manually labeled for
completing tasks, and SLpred refers to the list of skills pre-
dicted by the model. The denominator corresponds to the
total number of relevant skills in the dataset, while the nu-
merator counts the intersection of the relevant skills and
those correctly identified by the model.
Parameter Recall Rate (PR). The PR quantifies the
model’s ability to correctly identify the parameters associ-
ated with each skill. In many cases, each skill is contingent
upon specific parameters, which are often represented by



the labels of relevant objects within an image. The PR thus
measures the model’s accuracy in recognizing and interpret-
ing these parameters, a crucial aspect for ensuring the cor-
rect execution of the task. Accurate parameter identification
is fundamental not only for skill invocation but also for the
model’s overall performance in real-world applications. A
higher PR indicates a higher accuracy of the parameters pre-
dicted by the model, thus ensuring that the model correctly
identifies the entities that need to be valued in the figure.

PR =
|Paramgt ∩ Parampred|

|Paramgt|
(8)

where Paramgt refers to the list of parameters manually la-
beled for each skill, and Parampred denotes the list of pa-
rameters predicted by the model.
Skill&Parameter Recall Rate (SPR). Unlike the individ-
ual metrics SR and PR, SPR requires the model to identify
both the correct skills and the exact parameters associated
with each skill. It provides a more comprehensive and strict
evaluation of the model’s ability of scene understanding and
task planning in a real-world context. This metric is partic-
ularly useful in evaluating scenarios where both skills and
their contextual parameters are critical for task execution,
such as in visual recognition tasks where precise associa-
tions between actions and objects are necessary.

SPR =
|SP-Pairgt ∩ SP-Pairpred|

|SP-Pairgt|
(9)

where SP-Pairgt represents the set of all manually labeled
skill-parameter combinations, and SP-Pairpred refers to the
corresponding combinations predicted by the model.

Precise Matching Rate (PM). In addition to evaluat-
ing the correctness of skill-parameter matching, PM places
greater emphasis on assessing the logical dependencies of
the skill sequence, particularly for tasks with strict temporal
requirements. Instead of totally strict sequential order, this
metric focuses on ensuring that the necessary dependencies
are satisfied for successful task execution. For example, in
Make Juice task, the model must ensure that the juicer is
opened before adding fruit, but the order of adding apples
versus oranges is irrelevant.

We begin by aggregating the skill sequence according
to predefined operational patterns and constructing a di-
rected acyclic graph (DAG) with a designated source node
to represent the logical dependencies among operations. A
match is defined as a node in the model-generated graph that
shares the same skill name and parameters as a correspond-
ing node in the ground-truth graph while also satisfying the
logical dependency relationships, e.g. incoming and outgo-
ing edges.The formula for this metric is as follows:

PM =
|Nodematched|
|Nodetotal|

(10)
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Figure 13. Scaling trend. This result is evaluated on Select Painint
task with data scales of 100, 500, 1000, and 2000.

Model From Scratch From Pretrained
Octo 1.02 1.34
OpenVLA 3.02 11.74
RDT-1B 6.26 15.37

Table 7. Ablation of fine-tuning from scratch and pretrain. Evalu-
ated on primitive tasks with seen objects.

Model Avg PS
RDT-1B open step 64 15.37
RDT-1B open step 32 15.52
RDT-1B cls 17.68

Table 8. Comparison of open-loop and closed-loop control for
RDT-1B. Evaluated on primitive tasks with seen objects.

where the numerator Nodematched represents the number of
nodes in the model-generated DAG that match the corre-
sponding nodes in the ground-truth DAG. Nodetotal repre-
sents the total number of nodes in the ground-truth DAG.

Finally, these four scores are combined using predeter-
mined weights to compute a total score for each model. The
formula for this metric is as follows:

Score = w1 ·SR+w2 ·PR+w3 ·SPR+w4 ·PM (11)

where w1, w2, w3, w4 are the weights of different metrics,
with the constraint w1 + w2 + w3 + w4 = 1.

10. Detailed Analysis and Case Study
10.1. Ablations and Analysis for VLAs

Experimental results show that the current open-source
VLAs perform poorly on our tasks. On one hand, this can be



attributed to the high difficulty of VLABench tasks, which
impose stringent requirements on the generalization capa-
bilities of the models. More importantly, the limitations and
deficiencies in both the architecture and pretraining process
of current VLAs make it challenging for them to adapt ef-
fectively to downstream tasks after large-scale pretraining,
especially under fine-tuning scenarios with diverse data dis-
tributions. This stands in stark contrast to LLMs, which
excel in adapting to downstream tasks with minimal fine-
tuning on small datasets. To further illustrate the aforemen-
tioned issues, we conducted several ablation experiments:
• Data Scaling. More data implies a greater number

of visual-language to trajectory mappings. For specific
primitive tasks, we expanded the dataset to 2,000 sam-
ples and conducted separate evaluations on three models
using datasets of varying scales: 100, 500, 1,000, and
2,000 samples. As illustrated in Figure 13, as the num-
ber of training samples increases, the performance of all
models improves. In practice, this improvement is mainly
reflected in higher action accuracy and more robust be-
havior. We also conducted scaling experiments on other
tasks, but tasks that initially performed poorly, such as the
Select Toy task, did not show significant improvements
in success rate. This suggests that the performance dif-
ferences brought by scaling vary across different tasks,
and are related to task difficulty, skill requirements, and
visual complexity. These findings are similar to those in
[18, 47].

• Pretrained Effect. We also conducted an evaluation of
models trained with the fine-tuning dataset from scratch,
with the results summarized in Table 7. The findings in-
dicate that models of this scale struggle to quickly adapt
to downstream tasks with limited data. Moreover, models
trained from scratch exhibit a significantly slower con-
vergence rate compared to their pre-trained counterparts.
It is reasonable to infer that pretraining on large-scale,
domain-relevant data can significantly facilitate the faster
transfer of VLAs to downstream tasks.

• Closed-loop Effect. Following the open-source RDT
framework, the primary experiment employs a single-
trajectory inference scheme with 64 trajectory points, im-
plemented using open-loop control. However, open-loop
control is prone to error accumulation. To address this, we
conducted additional evaluations of RDT using closed-
loop control. The results in Table 8 show that closed-loop
control achieves slightly better performance compared to
open-loop control. This suggests that the low success rate
in task execution is primarily due to the inherent limita-
tions of the model itself.
To analyze why these models perform poorly, we base

our discussion on experimental results and observations
from two key perspectives.
Limitation of Model Architecture.

• Incomplete Information Intake. Some shortcomings in
the model architecture result in this issue. For instance,
OpenVLA and Octo only process single images with a
resolution of 224×224, which inherently puts them at a
disadvantage when the input images contain occlusions
or require finer texture details. Similarly, due to issues
with perspective and low resolution, directly mapping vi-
sual information to precise spatial coordinate points be-
comes challenging. Comparing OpenVLA and π0, both
of which are based on VLM, we find that π0 addition-
ally takes the end effector state as input when decoding
actions. This information and the output exhibit a strong
linear relationship, which helps in more accurate behavior
prediction.

• Lack of Memory. Current models only accept inputs
representing the current state, lacking position embed-
dings to capture temporal sequences or tokens to rep-
resent historical actions. This limitation can cause the
model’s behavior to become stuck in certain states. This
issue is particularly pronounced in long-horizon tasks,
where the model may “forget” previous actions and re-
peatedly perform the same behavior.

• Inherent Flaws of Different Architecture. The VLAs
we used primarily include two forms: transformer-based
next-token prediction architectures and diffusion model-
based architectures. The former, leveraging VLMs, ben-
efits from pretraining on world knowledge but inherently
suffers from precision loss due to the discretization re-
quired by action tokenization. On the other hand, diffu-
sion policies are better suited for continuous spatial dis-
tributions, yet they lack visual and language pretraining.
Additionally, diffusion models rely on multiple large en-
coders, such as T5, making it challenging to jointly fine-
tune parameters during unified training. This limitation
contributes to the poor performance of diffusion policies
in VLABench tasks requiring common sense.

Shortcomings of Pretrain. VLA pretraining has been
proven effective for efficient transfer to downstream tasks.
However, the current pretraining approaches may have cer-
tain issues. For example, RT-2 [5] highlights a pretrain-
ing strategy that jointly trains on multiple text tasks and
text-visual tasks to preserve the model’s inherent language
and reasoning capabilities, resulting in impressive general-
ization behaviors. Recent research [18] has confirmed that
jointly training multimodal VQA tasks with trajectory data
helps improve the model’s generalization ability across dif-
ferent dimensions. In contrast, OpenVLA, which is also
based on VLM, is pretrained solely on trajectory datasets.
This likely leads to the degradation of VLM’s original ca-
pabilities, such as commonsense knowledge and reasoning
skills.

Additionally, constrained by the availability of datasets,
the scale of current VLA pretraining data is far smaller



(a) Select Poker (b) Insert Flower

(c) Select Mahjong (d) Select Book

Figure 14. Failure case: failures caused by the inability of the
algorithm to percept task scene and plan on rotation.

(a) Physics QA (b) Select Toy
Figure 15. Failure case: fails to perceive object interactions.

(a) Graspnet successes. (b) Graspnet fails.

Figure 16. Failure case: Graspnet fails in generating valid grasp
points, resulting in task failing.

than that of language models. Drawing inspiration from the
scaling laws and emergent behaviors observed in language
models, there is likely a critical point and correlation be-
tween model parameter size and data volume. The scaling
curve for VLA pretraining, however, remains an open topic
for future research.

10.2. Simulation and Real-World Gap Analysis.

Real2sim gap. Since the models used in the experiments
were pre-trained on real-world data, but fine-tuned on sim-
ulation data, the real-to-sim gap may have an impact on the
experimental results. This could also be one of the rea-
sons why these VLA models perform poorly on VLABench.
Previous work [3, 30, 43] has shown that although these
VLA models were pre-trained on real-world data, they still
possess the capability to adapt to simulation tasks. More-
over, compared to previous SOTA methods, these fine-tuned
VLAs achieve promising results on simulation tasks. How-
ever, Kim et al. [30] point out that the performance im-
provement of VLAs in simulation environments, compared
to real-world environments, shows a reduction in the gap
compared to other methods without robotics pretraining. A
feasible approach is to mix a certain proportion of high-
quality simulation data into the pre-training dataset, allow-
ing the model to learn a broader range of data distributions.
We leave the exploration of the performance effects of us-
ing the large-scale data generated by VLABench in the pre-

training process for future work.
Sim2real gap. The sim2real gap has been extensively dis-
cussed and analyzed in previous work [35, 44, 47]. We
adopt similar approaches to minimize the gap between real
and simulated environments, such as domain randomiza-
tion and using more realistic environments and 3D objects.
Following the setting in Robocasa [47], we conducted ba-
sic real-world experiments. We chose the simple Select
Mahjong task as the test task and collected 50 real-world
data samples using teleoperation. During the experiment,
we trained two π0-base models: one using only 50 real
data samples and the other using 50 real data samples com-
bined with 200 simulation data samples. The success rates
of these two models are 3/20 and 5/20, respectively. This
confirms that the quality of our simulation data is sufficient
for real-world deployment.

10.3. Further Analysis for Workflows

From the experimental results, we observe that while
the framework algorithm based on the foundation model
demonstrates some degree of robustness in handling com-
plex semantic settings, the overall success rate and PS score
remain relatively low. A comprehensive analysis of the fail-
ure cases reveals that the underlying issues can be broadly
categorized into the following groups.
Perception. One of the primary challenges lies in the
model’s image and spatial perception capabilities. As Vox-



poser is implemented as a purely text-based framework, its
perception module relies directly on the ground-truth la-
bels of all items, which are provided as input for selec-
tion. While this leverages the comprehension and general-
ization capabilities of large language models to understand
tasks, it exposes significant limitations in scenarios that re-
quire spatial perception and image-based reasoning. Specif-
ically, Voxposer demonstrates clear incompetence in han-
dling tasks involving spatial awareness or detailed image
descriptions.

To address this, we augmented our experimental setup by
incorporating an image perception module into Voxposer.
Although this adjustment improved success rates on spatial
perception tasks, the overall performance deteriorated due
to errors introduced by the visual perception module. A
similar issue was observed in CoPA, where the SoM family
of models exhibited high sensitivity to segmentation param-
eters, requiring extensive tuning to achieve accurate entity
recognition. Even with optimization, a substantial number
of incorrect object recognition cases persisted, highlighting
fundamental challenges in the perception component.
Planning. Another significant limitation emerges in the
model’s planning capabilities. After selecting the target ob-
ject, the model’s lack of spatial perception often prevents
it from recognizing the need to adjust its pose, such as ro-
tating the robotic arm when grasping certain objects. This
deficiency leads to frequent task failures, particularly in sce-
narios involving objects like cardboard sheets or books, as
illustrated in Figure 14. Additionally, the simple point-
cloud-based center-of-mass grasping strategy employed by
the model exhibits a high probability of failure when in-
teracting with objects of complex shapes, such as toys, as
shown in Figure 15.

For CoPA, similar challenges were encountered in the
graspnet module, where planning grasping actions was hin-
dered by its instability. In many instances, the module
failed to identify a valid grasping point, resulting in task
failures, as depicted in Figure 16. These issues underscore
the model’s inability to effectively plan and execute tasks
involving diverse and irregularly shaped objects.
Module Connections. As hierarchical systems, such algo-
rithms rely on the integration of multiple independent mod-
ules, which inevitably introduces errors at the interfaces be-
tween components. For example, the large language model
may generate incorrect outputs, such as failing to locate
the corresponding object or the constraints generated by the
system may not be successfully converted into waypoints by
the solver. These errors significantly reduce the system’s ro-
bustness when handling diverse task conditions. The inabil-
ity to reliably bridge constraints and waypoints highlights a
critical limitation in the framework’s modular connectivity,
further undermining its ability to adapt to varying opera-
tional scenarios.

Figure 17. Performance of different sizes for the same model fam-
ily.

10.4. Ablations and Analysis for VLMs
In our evaluation of VLMs, we conducted two key ex-

periments to explore the impact of Chain-of-Thought (CoT)
prompting and few-shot learning on model performance.
Effect of CoT Prompting. Our investigation into the use
of CoT prompting revealed a notable improvement in over-
all performance for the InternVL2 model, as shown in Fig-
ure 18. Similarly, LLaVA-NeXT and Qwen2-VL demon-
strated enhanced performance in challenging tasks, particu-
larly those requiring reasoning about complex scenarios and
physics laws. However, their performance on semantically
common-sense tasks remained stagnant or experienced mi-
nor degradation. In contrast, the MiniCPM model exhib-
ited significant limitations: it failed to output answers at the
conclusion of the reasoning process when CoT was applied,
resulting in all scores dropping to 0.0.
Effect of Few-Shot Learning. As shown in Figure 19 our
exploration of few-shot learning with the Qwen2-VL model
indicated that increasing the number of few-shot examples
(0 to 7) enhances the model’s multimodal reasoning capa-
bilities, particularly under CoT prompting. This enhance-
ment was observed across both basic and complex scenar-
ios. However, we found diminishing returns beyond two
or three shots for tasks involving diverse semantic require-
ments or spatial reasoning. This suggests that the utility of
additional examples is context-dependent and saturates rel-
atively quickly in certain domains.
Effect of Model Size. To verify whether scaling in the
VLM domain applies to embodied reasoning tasks, we se-
lected models from the same model family but with differ-
ent sizes for evaluation. The results are shown in Figure 17.
While larger VLMs from the same model family typically
exhibit better performance, this trend does not always hold,
where Qwen2.5-VL serves as a counterexample.
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Figure 18. Variation of the six-dimensional scores of the different
models in the CoT case, where the orange line represents the case
with CoT, and the blue line represents the case without CoT.
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Figure 19. The impact of different few-shot settings on the perfor-
mance of VLMs. As the number of few-shot examples increases,
the generation quality of the model improves progressively.

Model Task Track 1 Track 2 Track 3 Track 4 Track 5 Track 6
IS PS SR IS PS SR IS PS SR IS PS SR IS PS SR IS PS SR

Octo

Task 1 0.10 0.0 0.0 0.12 0.0 0.0 0.06 0.00 0.00 0.14 0.00 0.00 0.20 0.00 0.00 0.20 0.00 0.00
Task 2 0.14 0.02 0.00 0.08 0.00 0.00 0.04 0.00 0.00 0.04 0.00 0.00 0.14 0.00 0.00 0.14 0.04 0.00
Task 3 0.68 0.04 0.00 0.46 0.02 0.00 0.52 0.04 0.00 0.04 0.00 0.00 0.14 0.00 0.00 0.14 0.04 0.00
Task 4 0.46 0.12 0.00 0.46 0.02 0.00 0.52 0.04 0.00 0.60 0.04 0.00 0.10 0.00 0.00 0.20 0.06 0.00
Task 5 0.22 0.10 0.10 0.16 0.04 0.00 0.20 0.04 0.04 0.22 0.06 0.06 0.22 0.00 0.00 0.20 0.00 0.00

OpenVLA

Task 1 0.38 0.08 0.00 0.30 0.02 0.00 0.32 0.04 0.00 0.28 0.04 0.00 0.26 0.00 0.00 0.26 0.16 0.02
Task 2 0.16 0.00 0.00 0.10 0.02 0.00 0.12 0.00 0.00 0.16 0.02 0.00 0.14 0.00 0.00 0.34 0.12 0.00
Task 3 0.84 0.06 0.00 0.72 0.04 0.00 0.72 0.06 0.00 0.68 0.06 0.00 0.24 0.00 0.00 0.50 0.16 0.00
Task 4 0.74 0.26 0.08 0.36 0.13 0.02 0.40 0.12 0.04 0.44 0.18 0.00 0.04 0.00 0.00 0.22 0.04 0.00
Task 5 0.38 0.24 0.24 0.30 0.14 0.14 0.34 0.12 0.12 0.34 0.16 0.14 0.12 0.00 0.00 0.12 0.00 0.00

RDT-1B

Task 1 0.38 0.12 0.00 0.30 0.07 0.00 0.28 0.06 0.00 0.30 0.04 0.00 0.30 0.00 0.00 0.20 0.08 0.00
Task 2 0.24 0.06 0.00 0.10 0.02 0.00 0.10 0.00 0.00 0.12 0.02 0.00 0.22 0.00 0.00 0.26 0.00 0.00
Task 3 1.0 0.15 0.0 0.84 0.11 0.00 0.84 0.08 0.00 0.76 0.08 0.00 0.22 0.00 0.00 0.30 0.20 0.00
Task 4 0.42 0.09 0.00 0.38 0.05 0.00 0.26 0.02 0.00 0.20 0.04 0.00 0.10 0.00 0.00 0.12 0.02 0.00
Task 5 0.46 0.30 0.30 0.34 0.16 0.16 0.32 0.20 0.20 0.40 0.22 0.22 0.18 0.00 0.00 0.20 0.04 0.00

π0-Base

Task 1 0.34 0.04 0.00 0.38 0.02 0.0 0.32 0.00 0.00 0.38 0.03 0.00 0.22 0.00 0.00 0.46 0.22 0.04
Task 2 0.10 0.02 0.00 0.14 0.03 0.00 0.40 0.07 0.00 0.44 0.09 0.00 0.32 0.00 0.00 0.34 0.16 0.06
Task 3 1.00 0.48 0.00 0.94 0.42 0.00 1.00 0.48 0.00 1.00 0.45 0.00 0.24 0.00 0.00 0.44 0.10 0.00
Task 4 0.88 0.39 0.12 0.78 0.2 0.06 0.86 0.23 0.04 0.84 0.21 0.00 0.08 0.00 0.00 0.20 0.10 0.00
Task 5 0.66 0.54 0.54 0.4 0.24 0.24 0.44 0.22 0.22 0.36 0.18 0.18 0.24 0.00 0.00 0.28 0.06 0.00

π0-Fast

Task 1 0.42 0.16 0.04 0.42 0.11 0.00 0.48 0.14 0.00 0.46 0.13 0.02 0.40 0.00 0.00 0.26 0.12 0.04
Task 2 0.40 0.22 0.06 0.30 0.10 0.00 0.56 0.09 0.00 0.46 0.07 0.00 0.24 0.00 0.00 0.40 0.14 0.04
Task 3 0.96 0.37 0.00 0.86 0.36 0.00 0.80 0.32 0.00 0.76 0.31 0.00 0.18 0.00 0.00 0.56 0.30 0.00
Task 4 0.69 0.18 0.02 0.48 0.13 0.0 0.30 0.04 0.00 0.38 0.03 0.00 0.12 0.00 0.00 0.12 0.06 0.00
Task 5 0.52 0.34 0.34 0.32 0.12 0.12 0.36 0.18 0.18 0.54 0.32 0.32 0.34 0.00 0.00 0.36 0.10 0.00

Table 9. Detailed result of the evaluation of VLAs. In track 1-4, tasks 1-5 are Select Fruit, Select Toy, Insert Flower, Add Condiment,
Select Painting; In track 5, tasks 1-5 are Select Poker, Select Mahjong, Select Billiards, Select Ingredient, Friction QA; In track 6, tasks
1-5 are Texas Holdem, Play Math Game, Find Unseen Object, Cluster Toy, Hammer Nail then Hang Picture



Model SR PR SPR MS Score FER
Llava NeXT 42.80 15.89 12.92 4.10 23.48 33.97
InternVL2 33.51 15.07 11.39 2.98 19.43 40.56
GPT 4v 59.41 27.22 24.70 7.35 34.65 14.07
GLM4v 68.97 3.15 11.91 0.53 28.85 0
MiniCPM V2 6 47.14 21.86 16.96 4.39 27.60 6.50
GPT 4o 51.41 32.43 28.79 11.54 33.54 0.31
Qwen2 VL 56.27 37.53 26.80 9.06 37.52 2.67

Table 10. Full evaluation results of VLMs, taking the average of all the evaluation episodes. FER: format error rate.

Instruction: “I’d like to make a dish called Sweet Potato and Cheese Bake this dinner. Help me prepare the ingredients of in the plate.”

Initial state Pick up the Potato Place the Potato on the plate Pick up the Cheese Place the Cheese on the plate

Initial state Pick up the CuSO4 Insert the CuSO4 at the labeled position Pick up the FeCl3 Insert the FeCl3 at the labeled position

Instruction: “Hi, I’m about to take some chemistry experiments. Please help me to rearrange the chemistry solution tubes by the nametag.”

Instruction: “Please hang the picture named 甲州三嶌越 on the wall safely and steadily.”

Initial state Pick up the hammer Use hammer to drive the nail in tightly Pick up the甲州三嶌越 Hang the 甲州三嶌越 on the wallPlace the hammer on the table

Instruction: “I have an exam tomorrow, and I want to review the chemistry experiments. Please neutralize with Na2CO3 solution and HCl solution, producing NaCl and CO2 gas.”

Initial state Pick up the Na2CO3 Pour the Na2CO3 into the reaction vessel Place the solution back on the test tube rack Pour the HCl into the reaction vessel

Instruction: “I am so thirsty after sport, and I want to drink a bottle of cool juice.”

Initial state Open the refrigerator door Take the juice out Place the juice on the table Close the refrigerator door

Instruction: ”Please heat the cooked food from the tray.”

Initial state Open the microwave door Place the food in the microwave Close the microwave door Press the heating button

Figure 20. Long horizon task requiring reasoning. These tasks all involve multiple skills and require reasoning.



Figure 21. Part of tasks in VLABench.





Task Type Ability
Dimension

Skill
Involved

Description

Select Fruit Primitive M&T Pick&place Pick the specific fruit into a specific recep-
tacle, such as “put the strawberry into the
basket”.

Select Drink Primitive M&T Pick&place,
Pull

Get the specific drink from a particular re-
ceptacle, such as “pick the cola out of the
fridge”.

Select Toy Primitive M&T Pick&place Put the specific toy into a specific recepta-
cle, such as “Select Ironman from the toys
and wrap it in the gift box”.

Select Book Primitive M&T Pick&place,
Pull

Take a particular book from the receptacle,
such as “Take Pride and Prejudice from
the bookshelf”.

Select Ingredient Primitive M&T Pick&place Get the specific ingredient from the par-
ticular receptacle, such as “Take the bell
pepper from the fridge and place it on the
tray”.

Insert Flower Primitive M&T Pick&place,
Insert

Insert the specific flower into the container,
such as “Insert the rose into a vase.”

Add Condiment Primitive M&T Pick&place,
Pour

Add the specific condiment into the dish,
such as “Add some salt into the dish in the
pot.”

Put Box on Famous
Painting

Primitive M&T Pick&place Place the geometric shape on the specified
famous painting., such as “Press the button
before the painting The Starry Night”

Pick ChemistryTube Primitive M&T Pick&place Select specific solution tube based on the
nametag, such as “pick up the tube of
CuCl2”.

Select Poker Primitive M&T Pick&place Select specific poker, such as “Pick jack of
red heart”.

Select Mahjong Primitive M&T Pick&place Select specific mahjong, such as “Pick
mahjong: 2 of Man and put it on the place-
mat”.

Select Billiards Primitive M&T Pick&place Select specific Billiards, such as “Pick
Black 8 and place it in any hole.”

Hammer Loose Nail Primitive M&T Pick&place,
Tool use

By comparing the lengths of different
nails, use a hammer to tighten the loose
nail, such as “Hammer the loose nail on the
wall”.

Select Fruit-Spatial Primitive M&T, SP Pick&place Pick the fruit in a specific place or a certain
spatial relationship, such as “put the near-
est strawberry into the plate”.

Select Drink-Spatial Primitive M&T, SP Pick&place Get the drink from a specific place or a cer-
tain spatial relationship, such as “pick the
monster outside”, while there is also a can
of monster inside the fridge.



Select Toy-Spatial Primitive M&T, SP Pick&place Take the toy from a specific place or a
certain spatial relationship, such as “Place
the toy on Luffy’s right-hand side into the
box”.

Select Book-Spatial Primitive M&T, SP Pick&place Take the book on the specific position or a
certain spatial relationship, such as “Take
out the book on the most left in the top
layer”.

Select Ingredient-
Spatial

Primitive M&T, SP Pick&place Get the ingredient on the specific position
or in a certain spatial relationship, such as
“Place the ingredient on the bottom layer
in the fridge onto the tray”.

Insert Flower-Spatial Primitive M&T, SP Pick&place Insert the flower on the specific position or
in a certain spatial relationship, “Place the
flower on the far left into the vase.”.

Add Condiment-
Spatial

Primitive M&T, SP Pick&place Add the condiment on the specific position
or in a certain spatial relationship, such as
“Add the furthest spice to the dish”.

Hang Picture Primitive M&T, SP Pick&place,
Hang

Hang the picture on the nail in the specified
location, such as “Hang the picture on the
highest nail”.

Pick ChemistryTube-
Spatial.

Primitive M&T, SP Pick&Place Take out the chemistry solution tube on the
specific position or in a certain spatial rela-
tionship, such as “Take the tube in the first
row, the second column before you”.

Select Poker-Spatial Primitive M&T, SP Pick&Place Select the poker on the specific position
or in a certain spatial relationship, such as
“Pick the second poker from left to right”.

Select Mahjong-
Spatial

Primitive M&T, SP Pick&Place Select the mahjong on the specific position
or in a certain spatial relationship, such as
“Pick the mahjong on the right of six of
sou”.

Put Billiards
in Pocket

Primitive M&T, SP Pick&Place Place the billiard ball into the specified
pocket, such as “Place the 8-ball into the
pocket in the right front”.

Select Fruit
with Common Sense

Primitive M&T, C&W Pick&Place Select fruit with specific characteristics,
including nutritional characteristics, com-
mon uses, whether they grow in clusters,
easy to peel, etc. Example: “Put the fruit
with the most vitamin C into the basket”
from among orange, banana, and apple.

Select Drink
with Common Sense

Primitive M&T, C&W Pick&Place Select a drink with some specific character-
istics including types of beverages, func-
tions of the beverages, flavors of the bever-
ages, etc. Example: “Get a can of energy
drink from the fridge” from among cola,
apple juice, and redbull.



Select Toy
with Common Sense

Primitive M&T, C&W Pick&Place Select the toy with some specific character-
istics including the associated IP, character
personality, character background, etc. Ex-
ample: “Put the toy from the Marvel series
to the giftbox” from among Hulk, Batman,
and Mickey.

Select Book
with Common Sense

Primitive M&T, C&W Pick&Place Select the book with some specific char-
acteristics including the type of the book,
the content of the book, the main mes-
sage it conveys, etc. Example: “Get the
book about computer science” from among
Steve Jobs, 3D Computer Vision and War
and Peace.

Select Ingredient
with Common Sense

Primitive M&T, C&W Pick&Place Select the ingredient with some specific
characteristics, such as “Pick an ingredient
full of protein from the fridge and put it on
the tray” from among egg, tomato and bell
pepper.

Insert Flower
with Common Sense

Primitive M&T, C&W Pick&Place Insert the flower with some specific charac-
teristics into vase including the flower lan-
guage, the symbolic qualities of the flower,
appropriate occasions for giving flowers,
etc. Example:“Insert the flower suitable for
Valentine’s Day into the vase” from rose,
sunflower, and tulip.

Insert Bloomed
Flower

Primitive M&T, C&W Pick&Place An intelligent agent should possess aware-
ness: flowers should be arranged with
blooming ones, not with those that are al-
ready withered. Example: “Insert a proper
flower into the vase” from among wilted
rose, wilted daisy, and sunflower.

Add Condiments
with Common Sense

Primitive M&T, C&W Pick&Place Add the condiment with some specific
characteristics including distinctive fla-
vor, seasoning role, suitability for various
dishes, and etc. Example: “Add the condi-
ment that makes the dish taste more salty”
from among salt, ketchup, and salad dress-
ing.

Select Painting
with Common Sense

Primitive M&T, C&W Pick&Place Press the button before the painting with
specific styles or contents. Example:
“Choose the painting in the style of
rococo” among from paintings of La
Liseuse, The Stary Night, and Golden Au-
tumn.

Pick Chemistry Tube
with Common Sense

Primitive M&T, C&W Pick&Place Pick up the specific solution without the
nametag and distinguish by the solution
color. Example: “Pick up the solution of
CuSO4” from among the solution of blue,
green, and yellow.



Select nth
Largest Poker

Primitive M&T, C&W Pick&Place Choose the largest poker under the rule
of the specific poker games. Example:
“Pick the largest poker in single under the
rule of Texas Holdem” from among Ace
of Spades, Three of Hearts, and Queen of
Clubs.

Select Unique
Mahjong

Primitive M&T, C&W Pick&Place Choose the mahjong with the unique
type. Example:“Pick the unique type of
mahjong” among from East, One of Man,
Nine of Man.

Select Billiards
with Common Sense

Primitive M&T, C&W Pick&Place Select a specific billiard game under partic-
ular rules with a specific score. Example:
“Place the two-point ball from a snooker
match into any pocket” from among green
ball, yellow ball, and red ball.

Select Fruit-
Semantic

Primitive M&T, SEM Pick&Place The user expresses implicit needs for a cer-
tain fruit during a semantically rich conver-
sation or context, such as: “Today, I sud-
denly feel like doing some baking and plan
to make a strawberry cake! Could you help
me prepare the fruits I’ll need?”

Select Drink-
Semantic

Primitive M&T, SEM Pick&Place,
Pull

The user expresses implicit needs for a
certain drink during a semantically rich
conversation or context, such as: “I just
worked out at the gym for a long time, and
now I’m a bit dehydrated. Could you help
me grab a bottle of electrolyte drink from
the fridge?”

Select Toy-
Semantic

Primitive M&T, SEM Pick&Place The user expresses implicit needs for a spe-
cific toy during a semantically rich con-
versation or context, such as “I’ve loved
Disney since I was a kid, especially the
Toy Story series! I want to place Buzz
Lightyear on the top layer of the shelf, but
I can’t reach it! ”

Select Book-
Semantic

Primitive M&T, SEM Pick&Place,
Pull

The user expresses implicit needs for a spe-
cific book during a semantically rich con-
versation or context, such as “I’m getting
ready to review for my final Python exam.
Could you help me prepare the textbook?”

Select Ingredient-
Semantic

Primitive M&T, SEM Pick&Place The user expresses implicit needs for a spe-
cific ingredient during a semantically rich
conversation or context, such as “I’m keep-
ing fit so I want to eat something full of
protein. I want a steak as my lunch and
could you get one for me?”



Insert Flower-
Semantic

Primitive M&T, SEM Pick&Place The user expresses implicit needs for a
specific flower during a semantically rich
conversation or context, such as “Today is
Teacher’s Day, and Ms. Lisa has always
been kind to me. I want to give her a
bouquet of carnations. Could you help me
place them in the vase on her desk?”

Add Condiment-
Semantic

Primitive M&T, SEM Pick&Place,
Pour

The user expresses implicit needs for a spe-
cific condiment during a semantically rich
conversation or context, such as “I’m mak-
ing tomato-braised beef brisket, but the
tomato flavor doesn’t seem strong enough.
Could you help me add some tomato paste?
Thanks!”

Select Painting-
Semantic

Primitive M&T, SEM Press The user expresses implicit needs for a spe-
cific solution during a semantically rich
conversation or context, such as: “I am a
student who has just started learning paint-
ing, and I’m not very good at distinguish-
ing between different styles of painting.
Could you help me identify which of these
three paintings is in the realist style?”

Select
ChemistryTube-
Semantic

Primitive M&T, SEM Pick&Place The user expresses implicit needs for a spe-
cific solution during a semantically rich
conversation or context, such as: “I’m go-
ing to demonstrate an acid-base neutraliza-
tion experiment today, but I’m missing an
acid-base indicator. Could you help me
grab the phenolphthalein solution?”

Simple Poker
Play

Primitive M&T, SEM Pick&Place The agent plays the poker that should be
played on behalf of the player during the
semantically rich interaction. Example:
“We’re playing Landlord, and the player
before me just played a 10. Now it’s our
turn. Please play a 2 for me.”

Simple Mahjong
Play

Primitive M&T, SEM Pick&Place The agent plays the Mahjong that should
be played on behalf of the player during
the semantically rich interaction. Exam-
ple: “It’s hard to win with the ’Wan’ char-
acter tiles left. Go ahead and discard the ’1
Wan’.”

Simple Snooker
Play

Primitive M&T, SEM Pick&Place The agent picks the billiard that should be
played on behalf of the player during the
semantically rich interaction. “We’re play-
ing a simple game of snooker. Now, let’s
pot the yellow ball into the pocket.”



Friction QA Primitive M&T, PHY Press Using the relevant physics knowledge of
sliding friction and rolling friction, deter-
mine the rolling speed of different shaped
and material objects on a slope. Exam-
ple: “Press the button before the object that
falls the fastest down the slope.”

Density QA Primitive M&T, PHY Press Visually judge the material of an object and
determine the relative density of objects
made from different materials. Example:
“Press the button before the object can float
on water.”

Magnetism QA Primitive M&T, PHY Press Visually identify the material of an object
and determine whether objects made from
different materials are magnetic. Example:
“Press the button before the object that is
not magnetic.”

Weight QA Primitive M&T, PHY Press Visually identify the material of an ob-
ject, and combine the material density and
shape (in the actual setup, this includes
cubes of different shapes, along with their
corresponding inscribed spheres and cir-
cumscribed spheres) to make a comprehen-
sive judgment of the object’s mass. Ex-
ample: “Press the button before the object
with the smallest weight.”

Thermal Expansion
QA

Primitive M&T, PHY Press Visually identify the material of an object
and determine the thermal expansion prop-
erties of objects made from different ma-
terials. Example: “Press the button before
the object with a medium thermal expan-
sion coefficient.”

Speed of Sound QA Primitive M&T, PHY Press Visually identify the material of an object
and determine the sound propagation speed
in objects made from different materials.
Example: “Press the button before the ob-
ject that sound propagates fastest in.”

Specular Reflection
QA

Primitive M&T, PHY Press Judge based on visual information whether
different objects exhibit specular reflection
and make a selection. Example: “Press the
button before the object that can reflect the
image of others.”

Drag Force QA Primitive M&T, PHY Press Determine the object’s free fall speed
based on its shape, texture, and material.
This involves physical theories such as air
resistance, the Kármán vortex street effect,
and others. Example: “Press the button be-
fore the object falls slowest in the air” from
among golf, basketball, football.



Basic Seesaw Usage Primitive M&T, PHY Pick&place,
Tool use

Using the principle of leverage, place a
heavy object on one side of the seesaw to
lift the other side. Example: “Make the
other side of the seesaw lift”.

Strike Billiards Primitive M&T, PHY Pick&place,
Tool use

Use the laws of collision to perform a sim-
ple strike. Example: “Use the cue stick to
strike the white ball, aiming to make it hit
other colored balls”.

Take Chemistry
Experiment

Composite M&T, SP,
SEM, C&W,
L&R

Pick&place,
Insert,
Pour

The agent should first use the user’s request
for the desired chemical product, combine
it with visual observation and common
knowledge for logical reasoning, and de-
termine the chemical solutions involved
in the reaction. After identifying the ap-
propriate solutions using the name tag, the
agent should select the solutions and mix
them into the flask. Example: “I would like
to obtain AgCl precipitation in the flask.
Please carry out this experiment.”

Find Unseen Object Composite M&T, SP,
L&R

Open&close
drawer,
Pick&Place,
Explore

The target object is not directly visible, re-
quiring the agent to open multiple drawers
and eventually find the target object. Ex-
ample: “Find a snack in the drawer for
me”.

Find Unseen Object
without Telling Find

Composite M&T, SP,
SEM, C&W,
L&R

Open&close
drawer,
Pick&Place,
Explore

The other settings are the same as for Find
Unseen Object, but the requirements are
implicitly conveyed through semantically
rich dialogue. The agent needs to be aware
of the need for exploration and search on
its own. Example: “I’m a bit hungry, could
you get me something to eat?”

Make Juice
with Juicer

Composite M&T, SEM,
L&R

Pick&place,
Tool use,
Press

Select the appropriate fruits based on se-
mantically rich user instructions, place
them into a container, and correctly use
the juicer. Example: “It’s so hot today!
I feel like having a freshly squeezed kiwi
and strawberry juice right now.”

Find Fruit to
Make Juice

Composite M&T, C&W,
SEM, L&R

Pick&place,
Tool use,
Press,
Explore

The fruits are not directly available and
visible to the agent because the fruits are
stored in a closed fridge or a cabinet. The
agents should find the proper fruit first.
The example is the same as above.

Plug-in Power Cord
to Make Juice

Composite M&T, C&W,
SEM, L&R

Pick&place,
Tool use,
Press,
Explore,
Insert

The other basic settings remain the same as
above. However, the juicer’s power cord
is not plugged in. The agent needs to
first observe this and, using common sense,
plug in the power cord to supply power.
The example is the same as above.



Take out Cool Drink Composite M&T, SP,
C&W, SEM,
L&R

Open&close
door,
Pick&place

Obtain user requirements through semanti-
cally rich interaction: the user wants a cold
drink. Given the observation of the same
target drink on the desk as disturbance,
the agent should use common sense to de-
termine that the drink from the fridge
should be chosen. Example: “The weather
is so hot! I feel like having a cold soda.”

No Drink in Fridge
& Refrigerate Drink

Composite M&T, SP,
C&W, SEM,
L&R

Open&close
door,
Pick&place,
Explore

The task is set the same as above. How-
ever, after the agent opens the fridge door,
it finds that the target object is not there.
The agent needs to realize that it should
first refrigerate the room-temperature
target drink.

Wrap Proper Toy
as Gift

Composite M&T, C&W,
SEM, L&R

Open&close
door,
Pick&place

Choose a suitable toy for kids as a gift from
product shelf during the semantic interac-
tion with the user. Then wrap in as a gift.
Example: “My son is a superhero fun, but
I don’t know that much. Could you wrap a
gift for him?”

Rearrange Books
by Year

Composite M&T, C&W,
SP, L&R

Pick&place Identify the book title and use world
knowledge to determine the publication
period. Then rearrange them. Example:
“Rearrange the book by published year or-
der in the top layer of the shelf, the far left
is the earliest one.”

Rearrange Books
by Author Name

Composite M&T, C&W,
SP, L&R

Pick&place Identify the book title and use world
knowledge to determine the author
name. Then rearrange them. Exam-
ple: “Rearrange the book by their author
names, the far right starts with the largest
word.”

Classify the Books Composite M&T, C&W,
SP, L&R

Pick&place Identify the book titles and categorize the
books based on their genre or content. The
agent needs to infer the classification cri-
teria on its own and correctly divide the
books into two layers. Example: “Divide
the books into two classes, one class on the
top layer while another on the bottom.”

Cook Dishes
Following Menu

Composite M&T, C&W,
SEM, L&R

Pick&place Multi-turn pick and place the correct in-
gredients for a dish whose menu is offered
by semantic instructions. Example: “I’m
about to cook a dish of tomato-fried eggs,
prepare ingredients in the tray.”

Store Proper Food Composite M&T, C&W,
SEM, L&R

Open&close
door,
Pick&place

Store the ingredients or fruits into the
fridge and do not put the disturbance in-
cluding snacks into the fridge. Example:
“I left some food on the table in the last
meal, store them properly please.”



Heat Food with
Microwave

Composite M&T, C&W,
SEM, L&R

Open&close
door,
Pick&place,
Press

Extract implicit goals from semantically
rich interactions: heating food. Use com-
mon sense to choose the proper food, such
as a hot dog, with the microwave, while
avoiding heating canned food or raw in-
gredients. Finally, correctly use the mi-
crowave. Example: “I just finished class,
and now my stomach is growling. Could
you heat up some food for me to have a
quick bite?”

Plug-in Power Cord
to Heat Food

Composite M&T, C&W,
SEM, L&R

Open&close
door,
Pick&place,
Press,
Insert

The other experimental settings remain the
same as above. The agent must first have
the common sense to plug in the power
source for the device to operate. The ex-
ample is the same as above.

Replace Wilted
Flower and Drop

Composite M&T, C&W,
SEM, L&R

Pick&place,
Insert

Based on the semantically rich user request
and using common sense, determine the
target flower. Discard the wilted flower in
the vase, and then insert the new flower.
Example: “It’s Valentine’s Day today, re-
place the flower in the vase.”

Find Condiment
and Add to Dish

Composite M&T, C&W,
SEM, SP,
L&R

Open&close
drawer,
Pick&Place,
Explore,
Pour

All the condiments are stored in the cabi-
net and the agent should proactively find
them first and add proper condiment into
the dish. Example: “The spiciness of this
dish isn’t quite enough. Could you add
some more seasoning to make it tastier?”

Hammer Nail
&Hang Picture

Composite M&T, C&W,
SEM, L&R

Pick&place,
Tool use,
Hang

The agent needs to observe and determine
if the nail is loose, and then use a hammer
to tighten the nail. After that, the agent
should hang the appropriate picture on the
wall. Example: “Hang ’the Stary Night’ on
the wall steadily.”

Assemble Hammer
&Hammer Nail

Composite M&T, C&W,
L&R

Pick&place,
Insert,
Tool Use

The agent needs to observe and reason
that the task cannot be completed with
the current conditions. It must first as-
semble the hammer handle and the ham-
merhead precisely before proceeding. Ex-
ample: “Hammer the loose nail.”

Rearrange Chemistry
Tube

Composite M&T, SP,
C&W, L&R

Pick&place,
Insert

Rearrange the multiple tubes by the cor-
responding relationships between color
and name tag, the result of utilizing com-
mon sense and reasoning ability. Example:
“Rearrange the solution tubes.”

Texas Holdem Play Composite M&T, C&W,
SEM, L&R

Pick&Place Deduce the strongest Texas Hold’em
hand based on the common game rules
and visual information. Then take multi-
step pick&place. Example: “We are play-
ing Texas Hold’em, place your strongest
hand combination on the placemat.”



Flip Facing-downs
&Play Texas Holdem

Composite M&T, C&W,
SEM, L&R

Pick&Place,
Twist,
Explore

Based on the previous task, some of the
cards are face down. The agent needs to
have an exploration mindset and actively
retrieve all the observational informa-
tion, then make the correct judgment. The
example is the same as above.

Play Mahjong Composite M&T, C&W,
SEM, L&R

Pick&Place The agent makes decisions based on
world knowledge of Mahjong rules com-
bined with visual information. It discards
an unnecessary tile and draws a necessary
tile to win. Example: “We seem to be close
to winning the game. Take the right actions
to help us win this round.”

Flip Facing-downs
&Play Mahjong

Composite M&T, C&W,
SEM, L&R

Pick&Place,
Twist,
Explore

The agent needs to have an exploration
mindset and actively retrieve all the ob-
servational information, then make the
correct judgment. The example is the same
as above.

Leverage SeeSaw to
Grasp Target

Composite M&T, C&W,
SEM, PHY,
L&R

Pick&place,
Explore,
Tool use

Using the lever principle, place one or
more heavy objects on one side of the see-
saw to lift the target object on the other
side, initially unreachable. The challenge
lies in the fact that if the placed weights
are insufficient, the agent will need to
add additional weights. Example:“I want
to eat the pear in the glass container, but I
can’t get it out. Can you help me?”

Find Weights to
Leverage SeeSaw

Composite M&T, C&W,
SEM, SP,
PHY, L&R

Open&close
drawer,
Pick&place,
Explore,
Tool use

All the weights are stored in the cabinet
and are not visible. The agent needs to
explore multiple drawers to find enough
weights before being able to properly use
the seesaw. The example is the same as
above.

Get Black Coffee Composite M&T, C&W,
SEM, L&R

Pick&place,
Tool use,
Press

The agent needs to derive the task goal
from semantically rich interactions: to pre-
pare a cup of coffee without milk and
sugar. Then, it should correctly place the
cup and operate the coffee machine. Exam-
ple: “I’m feeling sleepy right now. Could
you get me a cup of coffee? An Americano
will do.”

Get Sweet Coffee Composite M&T, C&W,
SEM, L&R

Pick&place,
Tool use,
Press,
Pour

The agent needs to additionally infer
firstly: the user prefers sweet coffee -¿ the
coffee needs to be prepared with sugar.
Example: “Get me a cup of sweet coffee to
clear my mind, thx!”

Get Latte Coffee Composite M&T, C&W,
SEM, L&R

Pick&place,
Tool use,
Press,
Pour

The agent needs to additionally infer
firstly: latte coffee is composed of black
coffee and milk. Example: “A cup of latte
please. Nice to meet you here, thank god!”



Set Dining Table
by Menu

Composite M&T, C&W,
SEM, SP,
L&R

Pick&place The agent needs to infer the appropri-
ate utensils based on semantic interac-
tions and the type of cuisine. For exam-
ple, chopsticks for Chinese cuisine, a knife
and fork for Western cuisine, and a spoon
if soup is being served. Example: “Today’s
main course is steak! Please help me set up
the table.”

Set Dining Table
Left-Handed

Composite M&T, C&W,
SEM, SP,
L&R

Pick&place The agent needs to first extract the key in-
formation from user interactions that the
user is left-handed. Then, using common
sense, it should adjust the placement of
the utensils, such as switching from the
original left-knife-right-fork arrangement
to a left-fork-right-knife setup. Example:
“Tonight, we’re having fried rice! Remem-
ber to get me a spoon. Oh, and don’t forget
that I’m left-handed.”

Play Snooker Composite M&T, C&W,
SEM, L&R

Pick&place Put the ball into the hole by snooker order:
yellow, green, brown, blue, pink, black.
The agent needs to make the correct se-
quence of decisions based on snooker
rules in world knowledge. Example: “Put
the colored billiards into holes by score or-
der in a snooker match.”

Cluster Toy Composite M&T, C&W,
SP, L&R

Pick&place Based on common sense, world knowl-
edge, and visual information, cluster the
toys according to their associated IPs,
character types, and other attributes. Ex-
ample: “Cluster the toys into two classes.”
These toys are Spiderman, Hawk Eye,
Nami, Chopper.

Classify Desserts Composite M&T, C&W,
SP, L&R

Pick&place Based on common sense, world knowl-
edge, and visual information, categorize
the desserts according to their types. Ex-
ample: “Classify the different desserts.”
These desserts are strawberry donut, ba-
nana donut, coco cupcake, common cup-
cake.

Setup Study Table Composite M&T, C&W,
SP, L&R

Pick&place
Open laptop

Determine the task goal from semantically
rich interactions: the user needs a spe-
cific book and to use the computer. The
agent needs to use common sense to infer
the correct book and place it on the desk,
while also turning on the computer. Ex-
ample: “I have a Python practical exam the
day after tomorrow, and I’m planning to re-
view later. Could you help me set up my
desk?”



Organize Study Ta-
ble

Composite M&T, C&W,
SP, L&R

Pick&place
Close laptop

Determine the task goal by observing the
desk and combining user interactions: or-
ganize the desk. This requires completing
subtasks in sequence, including arranging
the books and closing the laptop. Exam-
ple: “That’s all for today. Please help me
tidy up the desk. Thanks!”

Math Game Composite M&T, C&W,
SEM, L&R

Pick&place Based on the math problem provided by
the user, use logical reasoning to find the
answer and display it by arranging num-
ber blocks to form the solution. Exam-
ple: “Let’s play a math game, show me
the answer by number blocks. The ques-
tion is: ‘Toulouse has twice as many sheep
as Charleston. Charleston has 4 times as
many sheep as Seattle. How many sheep
do Toulouse, Charleston, and Seattle have
together if Seattle has 20 sheep?’” This
math question is from the GSM8K dataset
[10].

Art Game Composite M&T, C&W,
SEM, SP,
PHY, L&R

Pick&place Place the geometric object with a specific
physical property onto the painting that
aligns with the user’s hinted content or
style. Example: “Let’s play a game of
’Simon Says’! Place the geometric object
with a specific physical property onto the
painting that aligns with the user’s hinted
content or style.”.

Cluster Beverage Composite M&T, C&W,
SP, L&R

Pick&place Based on common sense, world knowl-
edge, and visual information, cluster the
drinks according to their types. Exam-
ple: “Cluster the beverages into two types.”
These beverages are mango juice, milk,
Vodka, Champagne.

Table 11. Task List. Include the name, type, ability required, and detailed description of all the tasks.
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