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1. Dataset Details
The official language-driven autonomous driving dataset [7]
is utilized to train our model, which includes 64K
instruction-following data clips collected across 8 towns on
CARLA [2] simulation environment. Each clip consists of
the following ingredients:

Multi-sensor input data: Multi-view RGB images from
the front, rear, left, and right cameras, along with corre-
sponding LiDAR data are provided in the dataset.

Navigation instructions: Each driving clip has one
aligned navigation instruction, which guides the movement
of the ego-car. Some examples of navigation instructions
are exhibited in Table 1.

Table 1. Examples of navigation instructions.

Type Instruction Examples

Start Go ahead and start driving.
Feel free to start driving.

Follow
At the next intersection, just keep heading straight, no turn.

Maintain your course along this route.
Continue driving straight on the designated highway.

Turn
Proceed ahead and make a left turn.

Up ahead, just take a left.
Next intersection, just swing a right.

2. Benchmark Details:
We assess the closed-loop driving performance of our
method on the standard LangAuto benchmarks [7]. It is also
established based on CARLA simulation but has several
significant features that distinguish it from previous bench-
marks like Town05 [5] and Longest6 [1]:

Language-guided driving. This benchmark leverages
the navigation instruction in the natural language format
to guide the model’s driving, without providing any target
points or action commands.

Various distances. This benchmark consists of three
tracks with varying route lengths: 1) LangAuto features
routes exceeding 500 meters. 2) LangAuto-short encom-
passes routes ranging from 150 to 500 meters and 3)
LangAuto-tiny contains routes less than 150 meters.

Diverse environments. This benchmark spans 8 towns in
CARLA and comprises 16 diverse environments, derived
from combinations of 7 distinct weather conditions and 3
different daylight settings.

3. Implementation Details

3.1. Model Details:

Visual Encoder: Given a sequence of visual data, where
each frame includes multi-view camera images and corre-
sponding LiDAR data, we adopt the pretrained visual en-
coder in LMDrive [7] to integrate multi-view RGB images
and LiDAR data and produce a unified feature representa-
tion Fi ∈ RN×C for each frame, with N representing the
total number of tokens. Specifically, the visual encoder em-
ploys a 2D ResNet [3] to extract image features from each
view, which are then fused using a Transformer encoder [8]
for multi-view feature integration. On the other hand, Point-
Pillars [4] followed by PointNet [6] are utilized to convert
raw LiDAR data to BEV features. Afterwards, a Trans-
former decoder is adopted to integrate the multi-view im-
age features into BEV features and two kinds of learnable
queries, generating BEV tokens, waypoint tokens and traf-
fic light tokens, respectively. In LMDrive [7], three down-
stream tasks, including object detection, future waypoint
prediction, and traffic light status classification are intro-
duced to pre-train the visual encoder. In our work, the gen-
erated queries Fi ∈ RN×C (N = 106) from the pre-trained
visual encoder, composed of 100 BEV tokens, 5 waypoint
tokens and 1 traffic light tokens are delivered to the subse-
quent connector module.

3.2. Experimental Details:

Training: Our proposed model is trained on 8 × A100
(40G) NVIDIA GPUs. An AdamW optimizer cooperated
with a cosine learning rate scheduler is adopted to train our
model. The initial learning rate is set to 1e−5, with a weight
decay of 0.06, and the total training epoch is 15. We main-
tain a fixed sampling interval of 2 frames during the training
process. Evaluation: We conduct the closed-loop driving
evaluation using version 0.9.10.1 of the CARLA simulator.
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