VRM: Knowledge Distillation via Virtual Relation Matching

Supplementary Material

8. Appendix
8.1. List of All Compared Methods

A list of all methods we have compared with in this paper
is as follows:

Feature-based methods include FitNets [56], NST [31],
AT [74], AB [26], OFD [25], VID [1], CRD [60],
SRRL [68], SemCKD [7], PEFD [12], MGD [71],
CAT-KD [23], TaT [42], ReviewKD [10], NORM [47],
FCFD [45], and RSD [78].

Logit-based methods include KD [27], DML [80],
TAKD [50], CTKD [41], NKD [72], DKD [81], LSKD [59],
TTM [82], SDD [63], and CRLD [76].

Relation-based methods include FSP [73], RKD [52],
PKT [53], CC [54], SP [61], ICKD [46], and DIST [29].

For MS-COCO object detection, we also compare VRM
with FGFI [62]. For ConvNet-to-ViT experiments, we also
present the results for LG [39] and AutoKD [40].

8.2. List of All Transformation Operations

For our main experiments, we borrow the RandAug-
ment implementation from the TorchSSL codebase'. It
comprises a total of 14 image transformation operations,
namely:

. Autocontrast: automatically adjust image contrast
. Brightness: adjust image brightness

Color: adjust image colour balance

Contrast: adjust image contrast

Equalize: equalise image histogram

Identity: leave image unaltered

Posterize: reduce number of bits for each channel

. Rotate: rotate image

o0 N U AW

. Sharpness: adjust image sharpness
. Shear_x: shear image horizontally

—_— —
—_ O

. Shear_y: shear image vertically
. Solarize: invert all pixels above a threshold
. Translate_x: translate image horizontally

—_— =
A~ W N

. Translate_y: translate image vertically

Besides, we also apply Cutout with a probability of
1.0, which sets a square patch of random size within the
image to gray. The above operations are preceded by
RandomCrop and RandomHorizontalFlip in our
virtual view image generation pipeline.

For ConvNet-to-ViT experiments, we follow Li et al.
[39] and use the RandAugment function provided by the

It tps://github.com/TorchSSL

Algorithm 1 PyTorch-style pseudo-code for computing
VRM losses

. #x: abatch of raw samples

#T,., T, transformation functions for real and virtual views
#£7, £°: teacher and student networks

B: batch size, C: number of classes

Generate real and virtual views of samples
Xp, Xy = Tr(x), Ty (x) # [B]

Obtain teacher and student predictions
2y 2y =7 (xp), £7 (x0) #[B.C]

25,75 =15 (xp), 5 (x0) # [B.C]

s

PR QN AN

_
N

Compute inter-sample virtual edjge matrices
: egv = Norm(zz.unsqueeze(O) - z,, .unsqueeze(1)) # [B.B.C]
efg\, = Norm(zf.unsqueeze(O) - zf.unsqueeze(l)) #[B,B,C]

—_—
N —

(95]

. # Compute inter-class virtual edge matrices

eIEV = Norm(zf.unsqueeze(l) - zf.unsqueeze(2)) #[C,C,B]

—_—
TS

: e]SCV = Norm(zf .unsqueeze(1) - zf.unsqueeze(Z)) #[C,C,B]

—_
=)

: # Obtain unreliable edge masks
: My = JE(zf.unsqueeze(O), zﬁunsqueeze(l)) < pm #|[B.B]
: My = JE(zf.unsqueeze(l), zf.unsqueeze(Z)) <pm #[C,C]

—_ =
0

—_
N=J

. # Compute VRM losses
loss_isv = (MSE(elqgv, eév) * Misy).sum()
¢ loss_icv = (MSE(ejny, eiy) * Micv).sum()

N D
— O

(3]
[\

: return loss-isv, loss_icv

t imm library . This function contains 15 image transfor-
mation operations:
. AutoContrast: automatically adjust image contrast
. Brightness: adjust image brightness
. Color: adjust image colour balance
. Contrast: adjust image contrast

. Invert: invert image
. Posterize: reduce number of bits for each channel
. Rotate: rotate image
. Sharpness: adjust image sharpness
10. ShearX: shear image horizontally

1
2
3
4
5. Equalize: equalise image histogram
6
7
8
9

11. ShearY: shear image vertically

12. Solarize: invert all pixels above a threshold

13. SolarizeAdd: add a certain value to all pixels below
a threshold

14. TranslateXRel: translate image horizontally by a
fraction of its width

15. TranslateYRel: translate image vertically by a frac-
tion of its height

Similar to the role of Cutout, the t imm library addi-
tionally implements a RandomErasing operation, which

2https://github.com/huggingface/pytorch-image-
models

https://github.com/TorchSSL
https://github.com/huggingface/pytorch-image-models
https://github.com/huggingface/pytorch-image-models

Teacher ResNet56 ResNetl110 ResNet32x4 WRN-40-2 WRN-40-2 VGG13
Student Venue ResNet20 ResNet32 ResNet8x4 WRN-16-2 WRN-40-1 VGGS8
Teacher 72.34 74.31 79.42 75.61 75.61 74.64
Student 69.06 71.14 72.50 73.26 71.98 70.36
Feature-based
FitNets [56] ICLR’15 69.21 71.06 73.50 73.58 72.24 71.02
NST [31] arXiv’'17 69.60 71.96 73.30 73.68 72.24 71.53
AT [74] ICLR’17 70.55 72.31 73.44 74.08 72.77 71.43
AB [26] AAAT'19 69.47 70.98 73.17 72.50 72.38 70.94
OFD [25] ICCV’19 70.98 73.23 74.95 75.24 74.33 73.95
VID [1] CVPR’19 70.38 72.61 73.09 74.11 73.30 71.23
CRD [60] ICLR’20 71.16 73.48 75.51 75.48 74.14 73.94
SRRL [68] ICLR’21 71.13 73.48 75.33 75.59 74.18 73.44
PEFD [12] NeurIPS’22 70.07 73.26 76.08 76.02 74.92 74.35
CAT-KD [23] CVPR’23 71.05 73.62 76.91 75.60 74.82 74.65
TaT [42] CVPR’22 71.59 74.05 75.89 76.06 74.97 74.39
ReviewKD [10] CVPR’21 71.89 73.89 75.63 76.12 75.09 74.84
NORM [47] ICLR’23 71.35 73.67 76.49 75.65 74.82 73.95
FCFD [45] ICLR’23 71.96 - 76.62 76.43 75.46 75.22
Logit-based
KD [27] arXiv’'15 70.66 73.08 73.33 74.92 73.54 72.98
DML [80] CVPR’18 69.52 72.03 72.12 73.58 72.68 71.79
TAKD [50] AAAT20 70.83 73.37 73.81 75.12 73.78 73.23
CTKD [41] AAATI’23 71.19 73.52 73.79 75.45 73.93 73.52
NKD [72] ICCV’23 70.40 72.77 76.35 75.24 74.07 74.86
DKD [81] CVPR’22 71.97 74.11 76.32 76.24 74.81 74.68
LSKD [59] CVPR’24 71.43 74.17 76.62 76.11 74.37 74.36
TTM [82] ICLR’24 71.83 73.97 76.17 76.23 74.32 74.33
CRLD [76] MM’24 72.10 74.42 77.60 76.45 75.58 75.27
Relation-based
FSP [73] CVPR’17 69.95 71.89 72.62 72.91 - 70.20
RKD [52] CVPR’19 69.61 71.82 71.90 73.35 72.22 71.48
PKT [53] ECCV’18 70.34 72.61 73.64 74.54 73.45 72.88
CCKD [54] CVPR’19 69.63 71.48 72.97 73.56 72.21 70.71
SP[61] ICCv’'19 69.67 72.69 72.94 73.83 72.43 72.68
ICKD [46] ICCV’21 71.76 73.89 75.25 75.64 74.33 73.42
DIST [29] NeurIPS’22 71.75 - 76.31 - 74.73 -

VRM - 72.09 75.03 78.76 77.47 76.46 76.19

Table 12. Top-1 accuracy (%) on CIFAR-100 for same-model teacher-student pairs.

sets a rectangular patch of random size and shape within
the image to random pixels. The above operations are pre-
ceded by RandomResizedCropAndInterpolation
and RandomHorizontalF1lip in our strong view im-
age generatino pipeline, which is the default configuration
in timm.

8.3. Pseudo-Code

In Algorithm 1, we provide the PyTorch-style pseudo-code
for the calculation of the proposed VRM losses. The con-
struction of relation edges can be conveniently implemented
through some matrix operations, with the redundancy edge
pruning implicitly incorporated. Overall, the proposed
losses can be neatly implemented in about 10 lines of codes
in PyTorch.

8.4. Details on Experimental Configurations

Datasets. We conduct experiments on CIFAR-100 and Im-
ageNet for image classification, and MS-COCO for object
detection. CIFAR-100 [35] contains 60k 32 x 32 RGB im-
ages annotated in 100 classes. It is split into 50,000 training
and 10,000 validation images. ImageNet [19] is a 1,000-
category large-scale image recognition dataset. It provides
1.28 million RGB images for training and 5k for validation.
MS-COCO [43] is an object detection dataset with images
of common objects in 80 categories. We experiment with
its train2017 and val2017 that include 118k training
and 5k validation images, respectively.

Configurations for main experiments. For CIFAR-100
main experiments, we strictly follow the standard training
configurations in previous works [45, 59, 81]. Specifically,

Teacher ResNet32x4 VGG13 ResNet50 ResNet50 ResNet32x4 WRN-40-2
Student Venue ShuffleNetV2 MobileNetV2 MobileNetV2 VGG8 ShuffleNetV1 ShuffleNetV1
Teacher 79.42 74.64 79.34 79.34 79.42 75.61
Student 71.82 64.60 64.60 70.36 70.50 70.50
Feature-based
FitNets [56] ICLR’15 73.54 64.16 63.16 70.69 73.59 73.73
NST [31] arXiv'17 74.68 58.16 64.96 71.28 74.12 74.89
AB [26] AAAT 19 74.31 66.06 67.20 70.65 73.55 73.34
AT [74] ICLR’17 72.73 59.40 58.58 71.84 71.73 73.32
VID [1] CVPR’19 73.40 65.56 67.57 70.30 73.38 73.61
OFD [25] ICCV’19 76.82 69.48 69.04 - 75.98 75.85
CRD [60] ICLR’20 75.65 69.63 69.11 74.30 75.11 76.05
MGD [71] ECCV’22 76.65 69.44 68.54 73.89 76.22 75.89
SemCKD [7] AAAT'21 77.02 69.98 68.69 74.18 76.31 76.06
ReviewKD [10] CVPR’21 77.78 70.37 69.89 75.34 77.45 77.14
NORM [47] ICLR’23 78.32 69.38 71.17 75.67 77.79 77.63
FCFD [45] ICLR’23 78.18 70.65 71.00 - 78.12 77.99
CAT-KD [23] CVPR’23 78.41 69.13 71.36 - 78.26 77.35
Logit-based
KD [27] arXiv'15 74.45 67.37 67.35 73.81 74.07 74.83
DML [80] CVPR’18 73.45 65.63 65.71 - 72.89 72.76
TAKD [50] AAAT20 74.82 67.91 68.02 - 74.53 75.34
CTKD [41] AAAT23 75.31 68.46 68.47 - 74.48 75.78
NKD [72] ICCV’23 76.26 70.22 70.76 74.01 75.31 75.96
DKD [81] CVPR’22 77.07 69.71 70.35 - 76.45 76.70
LSKD [59] CVPR’24 75.56 68.61 69.02 - - -
TTM [82] ICLR’24 76.55 69.16 69.59 74.82 74.37 75.42
SDD [63] CVPR’24 76.67 68.79 69.55 74.89 76.30 76.54
CRLD [76] MM’ 24 78.27 70.39 71.36 - - -
Relation-based
RKD [52] CVPR’19 73.21 64.52 64.43 71.50 72.28 72.21
PKT [53] ECCV’18 74.69 67.13 66.52 73.01 74.10 73.89
CCKD [54] CVPR’19 71.29 64.86 65.43 70.25 71.14 71.38
SP [61] ICCV’19 74.56 66.30 68.08 73.34 73.48 74.52
DIST [29] NeurIPS’22 77.35 68.50 68.66 74.11 76.34 76.40
VRM - 79.34 71.66 72.30 76.96 78.28 78.62

Table 13. Top-1 accuracy (%) on CIFAR-100 for different-model teacher-student pairs.

we train our framework for 240 epochs using the SGD op-
timiser and a batch size of 64. The initial LR is 0.01 for
MobileNets [28] and ShuffleNets [79] and 0.05 for other ar-
chitectures, which decay by a factor of 10 at [150th, 180th,
210th] epochs. Momentum and weight decay are set to 0.9
and 5e-4, respectively. Softmax temperature is set to 4.

For ImageNet experiments, as per standard practice, we
train our framework for 100 epochs with a batch size of 256
on two GPUs, with an initial LR of 0.1 that decays by a
factor of 10 at [30th, 60th, 90th] epochs. Momentum and
weight decay are set to 0.9 and le-4, respectively. Softmax
temperature is set to 2.

For MS-COCO object detection, we adopt the configura-
tions of Chen et al. [10], Liu et al. [47], Sun et al. [59], Wang
et al. [62], Zhao et al. [81] whereby we experiment with
Faster-RCNN-FPN [44] with different backbone models.
All models are trained for 180,000 iterations on 2 GPUs
with a batch size of 8. The LR is initially set as 0.01 and

decays at the 120,000th and 160,000th iterations.

Configurations for ConvNet-to-ViT experiments. As
few studies have considered this setting, we developed our
experiments following [40, 59] on the codebase provided
by [39]. Our experimental configurations follow [39] and
[49]. Specifically, the ResNet56 teacher is trained for 300
epochs with an initial LR of 0.1 and a cosine LR sched-
ule. The resulted pretrained teacher has a top-1 accuracy of
71.61%. All ViTs are trained for 300 epochs (including 20-
epoch linear warm-up) using the AdamW optimiser. The
initial LR is 5e-4 with a weight decay of 0.05, which even-
tually decays to 5e-6 via a cosine LR policy. The ResNet56
teacher is trained on 32 X 32 resolution images, while ViT
students are fed with 224 x 224 images. The default Ran-
dAugment is applied for data augmentation, with number of
randomly sampled operations n set to 2, transform magni-
tude m to 9, and probability of applying random erasing p

ResNet8x4 VGGS8

78.76 76.19
78.47 75.66

‘ ResNet32x4 VGG13

Baseline
wlo LS,

Table 14. Effect of LY. supervision.

to 0.25. All models are trained on a single NVIDIA RTX
3090 GPU with a batch size of 128.

Implementations. Our method is implemented in the
mdistiller’ codebase in PyTorch for image classifi-
cation experiments. For object detection, it also partially
builds upon the detectron2® library. For ConvNet-
to-ViT experiments, we utilise the pycls® and the
tiny-transformer® codebases. All reported results

are average over 3 trials.

Efficiency benchmarking. Tab. 10 benchmarks the train-
ing time per batch and the peak GPU memory usage of var-
ious methods on a workstation equipped with 20 Intel Core
19-10850K CPUs (10 cores) and an NVIDIA RTX 3090
GPU. All measurements are taken on CIFAR-100 with a
batch size of 64.

8.5. More Experimental Results

We present the full results on CIFAR-100 in Tabs. 12 and
13 to include more same-model and different-model distil-
lation pairs and additional methods for comparison.

8.6. More Ablation Studies

Effect of GT supervision policies. Tab. 14 shows the ef-
fect of removing the GT supervision on the student model’s
predictions of the virtual-view image. It demonstrates that
supervising student predictions of the virtual view is impor-
tant for ensuring the quality of the virtual view predictions.
The quality of vertices has a direct impact on the quality
of the edges (i.e., relations) constructed within the affinity
graphs. As such, we choose to also supervise the virtual
vertices of our graphs with GT labels.

Effect of longer training. The construction and transfer
of richer and more diverse relations mean that VRM may
benefit more from longer training. To verify this, we devise
a longer training policy (denoted as “LT”) than the stan-
dard 240-epoch policy in existing KD methods. For our LT
policy, the model is trained for 360 epochs and the LR de-
cays by a factor of 10 at the 150th, 180th, 210th, and 270th

3https ://github.com/megvii-research/mdistiller

4https://qithub.ccm/facesooxresearch/deteczran
Sh:tpsz//glthub.Com/facebookresearch/pycls
6https://qithub.com/,khL/tinvftransforﬂers

| KD RKD DIST VRM

Baseline | 73.83 72.63 76.16 78.76
LT 73.82 7249 7590 78.97

Table 15. Effect of longer training. “LT”: long-training policy.

T |1 2 3 4 5 6
Acc. (%) | 78.16 78.69 78.57 7876 78.41 78.63

Table 16. Effect of different temperatures.

epochs. All other configurations are kept the same. Accord-
ing to Tab. 15, VRM indeed benefits from longer training as
a 0.21% Top-1 accuracy gain is obtained with LT. In com-
parison, the performance of other methods plateaued with
more training epochs, which is likely due to overfitting to
the training samples and a lack of richer guidance signals
from the teacher.

Effect of different temperatures. The temperature of
Softmax, denoted by 7, controls the smoothness of the pre-
dicted probabilistic distribution. We simply opt for the com-
mon choice of 7 = 4 [27, 81], which is empirically shown
to produce the best results. Moreover, the proposed method
is sufficiently robust to varying values of 7, as shown in
Tab. 16.

Effect of pruning redundant edges. We conduct abla-
tion experiments to see the effect of pruning redundant
edges, described in Sec. 5.4 of the main text. As presented
in Tab. 17, matching the raw and bulky inter-sample affin-
ity graph with redundancy and duplication is not only less
efficient but also inferior in terms of performance. We pos-
tulate that this is partially ascribed the fact that each vertex
in the raw graph is connected to a larger and more com-
plex set of other vertices that involve both real and vir-
tual vertices. This complicates the learning while making
each vertex more vulnerable to an increased likelihood of
adverse gradient propagation. Another possible reason is
that matching real-virtual relations is more regularised, as
opposed to matching real-real or virtual-virtual intra-view
relations that are easier and more readily overfitted. Note
that we also conjectured that the degraded performance of
matching the raw graph may be ascribed to different dis-
tribution patterns of the prediction vectors at the vertices
since they now have a dimension of 2 x B compared to B.
We experimented with different temperature 7 in an attempt
to re-adjust the distributions to be more relation-matching-
friendly, but the results remain inferior.

https://github.com/megvii-research/mdistiller
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/pycls
https://github.com/lkhl/tiny-transformers

ResNet32x4 VGGI13
ResNet8 x4 VGGS8

Pruning
Configuration

Redundant £ (1 = 1) 77.39 75.26
Redundant £ (7 = 2) 77.80 74.94
Redundant £ (7 = 4) 77.19 75.30

Pruned £ (r = 4) 78.76 76.19

Table 17. Effect of pruning redundant edges.

o
o
o

Early Epochs w/ UEP
Fast Convergence Along
Convex Surface = Less Conflicts — wj/o UEP

o
w
v

Later Epochs
Fine-Grained Optimisation
at Basin
= More Conflicts

o
u
=]

o
>
«

o
»
o

1 Lower similarity =
Larger Conflicts

o
w
«

Avg. Per-Sample Grad. Similarity

=}

50 100 Epochs 150 200

Figure 8. Effect of unreliable edge pruning on gradient conflicts in
training.

8.7. More Analyses

Analysis of logit mean & standard deviation. In Fig. 9,
we plot the histogram of the mean and standard deviation
of instance-wise logit predictions given by various method.
IM methods are found to produce logits closer to the teach-
ers’ in terms of both logit mean and standard deviation dis-
tributions. Intriguingly, the proposed VRM, being a purely
relation-based method that is free of any explicit instance-
wise logit matching, is on par with IM methods in this re-
gard and markedly outdoes DKD. This suggests that the
proposed real-virtual relational matching provides strong
regularisation that better enables the student to learn the un-
derlying logit distribution of the teacher. This is particularly
evident given that RKD, a relation-based method which also
has an IM objective, is way further from teacher’s logit dis-
tribution.

Effect of UEP on optimisation conflicts in training. To
gain further insights into the effect of unreliable edge prun-
ing on the training dynamics, we trace the optimisation gra-
dient similarity in matching the edges throughout training.
Specifically, we compute the averaged pairwise cosine sim-
ilarity between all sample-wise gradient vectors within a
batch, and visualise the results in Fig. 8. We observe that
UEDP leads to higher gradient similarity on average. In other
words, there are fewer gradient conflicts, which also ex-
plains the faster convergence evidenced by Figs 7d.

VRM on features. In this work, we have chosen to con-
struct our virtual relation graphs G155 and GI€ from network
prediction logits {z; }2 ;. In this section, we conduct addi-

. ResNet32x4 VGGI3
Method ‘ Location ‘ ResNet8 x4 VGGS

RKD 72.63 70.87
PKT 74.41 72.78
CRD pooled feats 75.51 73.94
ReviewKD 75.63 74.84
VRM 76.39 74.92
VRM ‘ logits ‘ 78.76 76.19

Table 18. Applying VRM to feature embeddings.

tional experiments to investigate to what extent VRM can
work with features. To this end, we simply reconstruct our
graphs from the feature maps {f;}2 , right before the fi-
nal linear layer (denoted as “pooled feats” in Tab. 18) and
in the mdistiller codebase. Our virtual relation graphs
now become GI5 € REXBXD gpd GIC€ ¢ RP*DXB where
D is the dimension of the feature vector. Note that since we
no longer work with probability distributions, we remove
the Softmax operations that convert predictions to probabil-
ities. Other operations remain unchanged.

In Tab. 18, we compare the results of VRM trained using
graphs constructed from feature maps with existing meth-
ods that also build relations from the same features (i.e.,
“pooled feats”), namely RKD [52], PKT [53], CRD [60],
and ReviewKD [10]. It can be observed that the per-
formance of VRM deteriorates when applied to features.
The reason may be that predicted logits are more compact
condensation of categorical knowledge, which is therefore
more beneficial for our downstream task. This is particu-
larly so given that VRM does not contain an IM objective
that directly matches the logits. As such, VRM works best
when applied to logits. Nonetheless, when applied to fea-
tures, VRM still substantially outperforms all other meth-
ods that also work on the very same feature maps. This
shows that VRM still encodes better and richer knowledge
for distillation compared to the weaker relations transferred
by RKD and PKT.

Discussions on the use of joint entropy. In the formu-

lation of our unreliable edge pruning scheme, we use the

joint entropy (JE) between two predictions (of two nodes)

as a measure of edge uncertainty. While other measures

may be used, JE suits our purpose with several appealing

properties:

 Higher discrepancy between two vertices leads to higher
JE, which is a relative measure of uncertainty.

* As two predictions get aligned, JE approaches their indi-
vidual uncertainty, which is an absolute measure of un-
certainty.

As such, our criterion takes account of both relative and
absolute edge uncertainties throughout the learning process.

Logit standard deviation
N w »~ (4] [~

0.0 0.2 0.4

Logit mean

== teacher

== student (KD)

== student (DKD)

== student (RKD)
student (VRM)

0.6 0.8 1.0

Figure 9. Bivariate histogram of the mean and standard deviation of logits predicted by different models on CIFAR-100.

Comparison to KD methods using SSL. We highlight
the difference between our method and two KD meth-
ods that utilise self-supervised learning (SSL), namely
SSKD [65] and HSAKD [66].

SSKD utilises self-supervision signals via image trans-

formations and pretext tasks for knowledge distillation. The
proposed VRM fundamentally differs from SSKD in at least
the following aspects:

Motivation: While both methods involve the utilisation of
transformations to produce augmented views of input im-
ages, SSKD is directly inspired by and leverage the pre-
text task in self-supervised learning [11]. In contrast, our
method is pretext-task-free. Instead, VRM is motivated
by transformation invariance regularisation which was
originally popularised in semi-supervised learning [3, 37]
and domain adaptation [4].

Training formulation: A direct consequence of the point
above is that SSKD’s teacher first needs to be re-trained
with additional augmentations (which also causes SSKD
to use teachers of higher accuracy than ours), followed
by a separate fine-tuning stage for the pretext task. These
lead to significantly more procedures and computations,
whereas VRM is entirely free of such palaver.

Nature of matching objectives: SSKD is essentially a
hybrid method that employs both relation matching and
instance-to-instance matching objectives, whereas VRM
is purely relation-based method. In other words, SSKD
relies on IM to achieve competitive performance, while
VRM involves purely relation-based objectives.

Design choices: The designs of both methods are vastly
different, including but not limited to the formulation of
relations and the choices of augmentation policies, rela-
tion distance metrics, and model outputs used for com-
puting relations.

HSAKD is another method that makes use of self-

supervised learning and transformed views of input images.

This method is also fundamentally different from VRM
from the following aspects:

* Motivation: Like SSKD, HSAKD is also directly moti-

vated by the use of pretext tasks in self-supervised learn-
ing. HSAKD employs rotation prediction as its pretext
task. The proposed VRM is free of pretext task learning.

Training formulation: To enable pretext task learning,
HSAKD appends auxiliary classifiers to the intermediate
features at each stage to perform transformation classi-
fication. This means that, akin to SSKD, HSAKD also
needs to re-train the teacher model with modified archi-
tecture over the pretext task. The auxiliary classifiers
also introduce extra parameters. In contrast, the proposed
VRM does not involve these additional procedural, pa-
rameter, and computational costs.

* Nature of matching objectives: By matching the pre-

dictions made by a set of auxiliary classifiers between
teacher and student for each sample (as well as match-
ing the final predicted probability distributions between
teacher and student), HSAKD is fundamentally a instance
matching approach, whereas VRM transfers purely rela-
tional knowledge. Moreover, HSAKD employs symmet-
ric matching, which means the matching between teacher
and student auxiliary predictions are for the same view of
the input samples. By contrast, VRM exploits the rela-
tions across asymmetric real and virtual views with dif-
ferent difficulties.

* Design choices: HSAKD also differs from the proposed

VRM in terms of specific designs made. For exam-
ple, HSAKD adopts rotation to construct its pretext task,
whereas VRM utilises RandAugment policies. HSAKD
also relies on the use of the instance-wise logit match-
ing loss from vanilla KD [27] to reach competitive per-
formance, whereas VRM does not use any instance-
matching KD objective and still achieves much more su-
perior performance.

08

-08

-04

02

BB REINRRBRIEEERREEEER oo

00

04 8121620242632364044 485256 6064 68 72768084 88 9296

(a) KD

08

-08

-04

02

BB REINRRBRIEEERREEEER oo

5 L. o0
04 8121620242632364044 485256 6064 68 72768084 88 9296

(d) SP
08
- 08

-04

BB REINRRBRIEEERREEEER oo

04 8121620242632364044 485256 6064 68 72768084 88 9296

(g) DKD

08

-06

- 04

02

00

0 4 81216202428 32 364044 48 5256 60 64 68 72 768084 85 92 96

0 10
4
8
12 i
16
20 ¢ 08
24
28
2
B
40 -06
4
48
92
%
80 5 -04
64
68
2B
7% =
80 02
8
] 2ol 1
§ + g
% _.:"'.‘..l:l'|'“:‘|j_.- o T N i P 00
0 4 81216202428 32 364044 48 5256 60 64 68 72 768084 85 92 96

(e) ICKD

08

-06

-04

BB EEINR RSB EEEREREEERwro

0 4 8121620242832 364044 48 5256 60 64 68 72768084 85 92 96

(h) MLLD

08

-04

02

BB RS NR LR EEEEREREEERwro

00

(c) PKT

08

-06

-04

02

BB RS NR LR EEEEREREEERwro

.* =
~ =Tl 00
0 4 8 12162024 2332364044 485256 6064 68727680 84 85,9206
(f) DIST

0 10
4
8 -
-
1
2 B 08
2
%
Oy
25
@0 06
“ g
]
2
4
& -04
o 1
&
7
76
& 02
8
&
o 8
9% =

5 Ty s o 00
0 4 8121620242832 364044 485256 6064 68 72768084 85 92 9%

(i) VRM

Figure 10. More visualisations of teacher-student prediction discrepancy maps for different KD methods.

More teacher-student discrepancy maps visualisations.
Fig. 10, we provide more visualisations of the class-wise
prediction discrepancy between teacher and student models

for different KD methods (ResNet32x4 — ResNet8x4 on

CIFAR-100).

More t-SNE visualisations.

In Fig. 11, we further show-

case the t-SNE visualisations of embeddings learnt by
more KD methods as well as those by the teacher model
(ResNet32 x4 —ResNet8 x4 on CIFAR-100).

More loss landscape visualisations.
more visualisations of loss landscape for different KD meth-
ods (ResNet32 x4 — ResNet8 x4 on CIFAR-100).

Fig. 12 provides

(c) PKT

(b) RKD

(a) KD

(f) DIST

(e) ICKD

(d) SP

(i) MLLD

(h) DKD

(g) FitNets

(1) Teacher

(k) VRM

() LSKD

Figure 11. More t-SNE visualisations of features learnt by different KD methods.

-1.0

(h) VRM

Figure 12. More loss landscape visualisations of different KD methods.

(i) Teacher

N » o o

	Appendix
	List of All Compared Methods
	List of All Transformation Operations
	Pseudo-Code
	Details on Experimental Configurations
	More Experimental Results
	More Ablation Studies
	More Analyses

